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ABSTRACT

The most recent trend in the Information and Communication Technology (ICT) world is toward an ever growing demand

of mobile heterogeneous services that imply the management of different Quality of Service (QoS) requirements and

priorities among different type of users. The Long Term Evolution (LTE)/LTE-Advanced standards have been introduced

aiming to cope with this challenge. In particular the resource allocation problem in downlink needs to be carefully

considered. Herein, a solution is proposed by resorting to a modified Multidimensional Multiple-choice Knapsack Problem

(MMKP) modeling, leading to an efficient solution. The proposed algorithm is able to manage different traffic flows taking

into account users priority, queues delay and channel conditions achieving quasi-optimal performance results with a lower

complexity. The numerical results show the effectiveness of the proposed solution with respect to other alternatives.
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1. INTRODUCTION

Nowadays there is an increasing number of mobile

terminals (User Equipments, UEs) that handle several

multimedia communications (such as audio/video calls)

and are becoming effective computing nodes supporting

new applications and services. For this reason future

wireless broadband communications shall be able to

provide a seamless interconnection of mobile users with

multiple traffic flows and different QoS constraints. This

is challenging in mobile wireless systems characterized

by a rapidly changing scenario due to the user mobility,

propagation effects and traffic burstiness.

The so-called 3G and beyond communication networks

(e.g., UMTS, WiMAX, WCDMA, LTE, etc.) made

possible building networks characterized by a multi-user

scenario where the terminals can communicate by using

multiple traffic classes even in mobility. Among others,

the Long Term Evolution (LTE)/LTE-Advanced system,

supported by the 3GPP consortium [1], is receiving great

attention due to its flexibility and capabilities [2]. It is able

to satisfy new communication requirements, thanks to its

low latency and high spectral efficiency that guarantee high

data rate and real time services.

The LTE physical layer is based on the Orthogonal

Frequency Division Multiple Access (OFDMA) technique

where the available bandwidth is divided into several
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smaller bands, called subchannels, and disjunctive sets of

subcarriers are allocated to different users thus providing a

flexible multiuser access. An efficient OFDMA scheduler

can exploit inherent multi-carrier nature of OFDMA

and channel multiuser-diversity to allow link adaptation

according to the behaviour of the narrow-band channels.

In addition the correct amount of resources is assigned to

each user and each traffic flow in order to respect the QoS

constraints and the user priority.

The scheduling problem in an OFDMA system can be

modeled as a joint subcarrier, rate and power allocation

problem: at any scheduling instant, the resource allocation

algorithm has to map each traffic flow into a given set

of subcarriers with a suitable amount of power and rate

taking into account priority, QoS constraints and channel

state information. The resource allocation in OFDMA

has received a great attention and different solutions

can be found in the literature. Among them, in [3] a

joint optimal subcarrier, power and rate allocation with

the aim of sum-average-rate maximization is presented,

while [4] proposes a resource allocation strategy that

maximizes the instantaneous or the ergodic rate of the

users optimizing the transmission power of each subcarrier.

The resource allocation scheme presented in [5], aims

to assign more resources to those users characterized

by a better channel quality or having received in the

past few downlink resources. In particular, this strategy

represents an extension of the Proportional Fair (PF)

scheduler [6, 7, 8]. In [9], the authors propose a set of

subcarrier allocation techniques that, taking into account

the channel state information, try to maximize the system

capacity guaranteeing user fairness. Instead [10] proposes

a scheduling technique that takes into account the users

bandwidth requests and different traffic types in order to

improve the system throughput. Similarly, [11] proposes

a subcarrier allocation strategy that optimizes the overall

system ergodic capacity modeling the scheduling problem

as a combinatorial problem whose inputs are the total

amount of downlink radio resource and the information

about the propagation conditions experienced by each user.

Other different resource allocation approaches improve

the user experience by imposing the minimization of the

interference in a single and multi-cellular environment, as

described in [12, 13]. We can note that all the resource

allocation algorithms presented in [3]-[13] do not consider

explicitly any QoS constraints that may characterize the

different traffic flows directed to each UE.

There are several resource allocation strategies that

maps the QoS requirements of a mobile user into a

minimum sustained rate, however, this solution represents

a severe limitation if we consider that a mobile

terminal should be able to handle different traffic flows,

characterized by different QoS constraints, at the same

time.

To the best of our knowledge, the definition of a

scheduling scheme able to explicitly take into account

different QoS profiles in a multi-user environment is still

an open issue. This is a difficult problem to be solved

especially considering mobile users and optimal solutions

result to be not affordable from a practical point of view.

For this reason different optimization approaches have

been investigated. In [4] an optimization approach based

on Lagrange multipliers is proposed. It is limited to

the radio resource allocation without any constraint on

the user requirements. In [14], the authors focus on a

scenario similar to that considered in this paper, but the

problem is modeled as a convex optimization problem and

solved using a dual decomposition approach by exploiting

the Hungarian Algorithm. The Hungarian Algorithm has

been also considered in [15], while focusing on a video

streaming scenario.

A different approach is to model the multiuser

downlink resource allocation problem as a combinatorial

optimization problem, with a particular attention to the

Knapsack Problem (KP) approach, extensively used in

operative research context. In the literature some proposal

for exploiting the KP modeling in wireless resource

allocation has been proposed. In [16] the authors propose

to model the resource allocation problem in a WiMAX

system as a KP.

Differently from the previous approaches we propose

to use the Multidimensional Multiple-choice Knapsack

Problem (MMKP) [17] where the optimization is based

on the selection of multiple variables. Indeed, the MMKP

differs from the classical KP, due to the presence in the

model of sets of variables: the objective of the problem

is to select the best variable in each set. The optimization

problem we consider, where there are multiple users data

flows grouped in different QoS classes can be more

efficiently modeled as a MMKP rather than a KP.
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Even if the MMKP approach allows to have an

optimal solution to the downlink resource allocation

problem it suffers of a high complexity [18]. This paper

proposes a novel heuristic, named EGRAS (Extended

Greedy Resource Allocation Scheme) with the aim of

reducing the computational complexity. The effectiveness

of the proposed approach, in comparison with others

widely adopted scheduling schemes, has been validated

by resorting to computer simulations shown in Sec. 5.

In this section the performance of the proposed heuristic

scheduling strategy will be compared with the exact

solution of the proposed MMKP-based scheduling model,

showing that the EGRAS reaches a suitable compromise

between optimal solution performance and complexity.

The organizations of this paper is the following.

In Section 2 the main features of LTE systems and

the considered system model are presented, while in

Section 3 the focus is on the multi-class multi-user

downlink scheduling problem. In Section 4 the proposed

scheduling scheme is described by resorting to the MMKP

optimization, in Section 5 performance comparisons are

given as stated before, and finally conclusions are drawn

in Section 6.

2. SYSTEM MODEL

In this section the system model is presented. We consider

the downlink phase of a LTE system assuming TDD (Time

Division Duplexing) mode of operation (also known as

TD-LTE).

The radio resource in a TD-LTE system is organized in

radio frames (10 ms long) each one composed by two half-

frames, lasting 5 ms. One half-frame is composed by five

sub-frames, 1 ms long. According to the TDD duplexing

scheme, a sub-frame can carry both uplink or downlink

traffic; in particular, in TD-LTE seven different radio frame

configurations are defined [2]. This paper relies on the

third downlink profile [19] for a TD-LTE radio frame

characterized by three uplink sub-frames and five downlink

sub-frames in the remaining part.

Since LTE relies on the OFDMA, a downlink sub-

frame is a time-frequency grid divided in Resource Blocks

(RBs). Each RB is composed by 7 or 6 OFDM symbols

(depending on normal or extended cyclic prefix) and

12 contiguous subcarriers. The RB represents the basic

resource allocation unit that a scheduling scheme can

manage in an atomic manner. Different RBs within a sub-

frame can use different modulation and coding schemes

(MCS), see Tab. I. The selection of the best suitable MCS

is performed assuming a target error rate as described in

[20].

According to the LTE standard, different service types

can be served; in particular, LTE supports communication

flows belonging up to nine QoS profiles, four with Granted

Bit Rate (GBR) and five not GBR (Non-GBR).

We consider a network topology composed by one

eNodeB and a variable number of UEs randomly placed

around the eNodeB. In order to detail more clearly the

downlink resource allocation problem without loss of

generality, we can imagine that the eNodeB can serve a

set U = {u1, u2, . . . , uM} of M active UEs and is able to

manage a set Q = {q1, q2, . . . , qT } of T downlink traffic

flow types (characterized by different QoS constraints),

mapped on T buffers (modeled as First Input First Output

queues) for each served UE. Hereafter, we will refer to the

above mentioned eNodeB buffers as output queues.

At each Transmission Time Interval (TTI), the downlink

scheduler maps data on the RBs (belonging to the setR =

{r1, r2, . . . , rN} of N elements) forming one downlink

data traffic sub-frame.

The parameters that a downlink scheduler should take

into account are:

• Channel Quality Indicator (CQI) - it represents

the main source of information (at the eNodeB side)

about the quality of the downlink channel between

the eNodeB and a specific UE. Each UE sends to

the eNodeB its CQI report computed by measuring

the downlink reference signal;

• Delay - the eNodeB holds the downlink data traffic

in one or more queues: a downlink scheduler has

to reduce the delay suffered by the packets in each

queue;

• Priorities - in a network there are users (for e.g.,

the UEs held by institutional users) and traffic flows

(for e.g., VoIP communications), characterized by

specific QoS constraints and priorities.

It is important to note that the 3GPP consortium does

not provide any guideline for implementing scheduling

schemes, demanding it to manufacturer.
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3. MULTI-CLASS MULTI-USER

DOWNLINK SCHEDULING

The aim of the scheduling is to maximize the overall

throughput of the system by respecting specified QoS

constraints. Thus, the problem can be modeled as a

combinatorial problem where M × T variables need to be

mapped into N resources, i.e., mapping all the possible

QoS classes belonging to all the users into N resource

blocks. Moreover, the resulting scheduling problem is

modeled to take into account several aspects: the quality

of the downlink channel between the eNodeB and each

UE, the length of output queues and the data flow priority.

Hence, the optimal resource allocation corresponds to

solve the problem:

max
xi,j,l

{
N∑

i=1

M∑

j=1

T∑

l=1

xi,j,lvi,j,l

}
(1a)

subject to

M∑

j=1

T∑

l=1

xi,j,l ≤ 1 i = 1, . . . , N (1b)

N∑

i=1

ci,jxi,j,l ≤ wj,l j = 1, . . . ,M, l = 1, . . . , T

(1c)

xi,j,l ∈ {0, 1} j = 1, . . . ,M, l = 1, . . . , T

i = 1, . . . , N

where xi,j,l is a binary variable equal to 1 if the i-th

RB holds data traffic belonging to the l-th QoS class and

directed to the j-th UE, or 0 otherwise.

By noticing (1a), the Resource Allocation Problem

(RAP) relies on the maximization of an objective function

where vi,j,l (called mapping profit) represents the profit

that the eNodeB achieves if it maps the traffic belonging

to the l-th QoS class and directed to the j-th UE in the i-

th RB. The constraint (1b) states that one RB can hold at

the same time (i.e., in the same TTI) only the traffic toward

one UE and belonging to one QoS class (i.e., it corresponds

to consider a RB holding data traffic belonging to one

outgoing queue). The constraint (1c) states that from the l-

th output queue related to the j-th user it is possible to send

an amount of data less or equal to the total amount of data

wj,l in the queue. The ci,j parameter (called RB capacity

Table I. Available QI values.

MCS adopted in a RB QI

QPSK 1/2 (BER ≥ 5 · 10−4) 0

QPSK 1/2 (BER < 5 · 10−4) 2

16-QAM 1/2 4

64-QAM 1/2 6

or, equivalently, mapping cost) represents the amount of

bits that the i-th RB (directed to the j-th user) can hold

according to the specific MCS used in the RB.

Given a RB ri, a user uj and a QoS class ql, the mapping

profit can be defined as

vi,j,l = αgi,j + βplwj,l + γdj,l (2)

where:

• gi,j represents the downlink channel Quality Index

(QI) perceived by the j-th user and related to the

i-th RB; it should be noted that the MCS cannot

change within a RB. The values are reported in

Tab. I∗;

• pl represents the relevance of the l-th QoS traffic

class (hereafter called “priority”). In a system

characterized by several traffic flows, belonging to

several QoS classes and characterized by different

priority indexes, the relevance of a QoS class is

not necessarily function of its priority but can be

derived from the statistical characterization (if it is

available) of the QoS class itself;

• dj,l, is the transmission delay and represents the

time elapsed from the last transmission event

related to the l-th QoS class of the j-th UE until

the current scheduling instant.

The three terms of the linear combination are normalized

respect to their maximum values in the profit expression.

The parameters α, β and γ are non-negative real values

representing the weights of the linear combination.

The downlink scheduler in the eNodeB can produce

a feasible solution of the cross-layer resource allocation

problem by solving the RAP at each TTI. Moreover, by

using the RAP-based scheduling, the following goals can

be achieved:

∗In the case of QPSK, if an UE experiences a Bit-Error-Rate (BER) less than

5 · 10−4 the QI is equal to 0, otherwise 2.
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• UEs characterized by a better downlink channel

(i.e., higher QIs), longer output queues and higher

transmission delays are preferred;

• by defining the mapping profit as a linear

combination of physical (as the QIs) and MAC

(as the plwj,l) layer indexes, the eNodeB is able

to manage scenarios where one or more UEs are

characterized by low QIs and long output queue

lengths, or scenarios where one or more UEs are

characterized by an high QI but they are associated

to almost empty output queues. In the first case, the

RAP-based scheduler assigns a congruous amount

of resources to these users avoiding the queue

saturation and in the second one a waste of

resources is prevented.

• the delay term introduces more fairness among the

users by preventing the starvation of users with low

QI and partially filled output queues.

The RAP problem is an integer optimization problem

and cannot be solved in a computationally efficient way.

In the literature there are several sub-optimal solution

to the resource allocation problem. Our proposal is

based on the modeling of the problem by using a

combinatorial optimization approach, by exploiting the

Knapsack Problem (KP) approach as explained in the

following section.

4. THE MMKP-BASED DOWNLINK

SCHEDULER

The KP approach is a widely known method to solve

combinatorial problems. Due to the multidimensional

nature of the RAP, we focus here on a variation of

the KP, named MMKP. The MMKP is a combinatorial

optimization problem, where it is supposed the presence of

sets of variables, and the aim is to select the best variable

in each set, subject to resource constraints, in order to

maximizing the objective function. The MMKP problem

can be formulated as [21]:

max

N∑

i=1

M∑

j=1

xi,j,lvi,j (3a)

subject to

M∑

j=1

xi,j = 1 i = 1, . . . , N (3b)

N∑

i=1

M∑

j=1

cl,i,jxi,j ≤ wl l = 1, . . . , T (3c)

xi,j ∈ {0, 1}

From (3), it is possible to note the similarity between

the MMKP formulation and the RAP in (1).

The derivation of an exact solution for the MMKP

is usually a complex task. The proposed algorithms,

[22, 23, 18], to the best of our knowledge does

not consider real-time requirements (for instance those

concerning the resource scheduling in a multimedia

system [22]), consuming an amount of computing time

and resources actually not affordable. However, several

heuristic strategies have been introduced addressing

MMKP instances of practically interesting problems. The

first heuristic method has been originally proposed to solve

the 0-1 Knapsack Problem (0-1 KP) [17] and then extended

to the MMKP family [17]. This is also the case of the

heuristic procedure proposed by [24] and based on the

Lagrange multiplier. In [22, 25, 23] the so-called Heuristic

(HEU), Modified-HEU (M-HEU) and the Convex-HEU

(C-HEU) algorithms have been proposed. Starting from a

feasible solution, they update the components of a solution

characterized by a low profit (in our case, the mapping

profit) producing a new feasible solution characterized by

a high profit. The updating process is performed until

the maximum number of iterations is reached. In [26] a

different heuristic approach is described dealing with a

dimensional reduction of the admissible solution set.

Moreover, all these solutions cannot be used to solve

the RAP. This is because the MMKP does not directly

model the RAP due to the presence of the inequality

in one constraint. MMKP approach can be used only to

solve a particular case of the RAP optimization problem,

where the constraint (1b) is substituted with the following

relation:

M∑

j=1

T∑

l=1

xi,j,l = 1 i = 1, . . . , N (4)

This corresponds to consider that all the resources, i.e.,

the RBs, are always used and that the output queues have
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Procedure 1 Extended Greedy Resource Allocation

Scheme

1: xi,j,l = 0, i = 1, . . . , N , j = 1, . . . ,M , l =
1, . . . , T

2: for i← 1 to N do

3: (u∗, q∗, ηi,u∗,q∗)← findMaxEfficiency(1, i)
4: if u∗ 6= undefined and q∗ 6= undefined then

5: xi,u∗,q∗ ← 1
6: wu∗,q∗ ← wu∗,q∗ − ci,u∗

7: end if

8: end for

always an amount of resources at least equal to the RBs to

be sent.

For this reason we are interested in the solution of a

modified MMKP problem where the saturation hypothesis

can be neglected leading to a more realistic model. The

method proposed here (named EGRAS) resorts to a novel

heuristic approach to solve an instance of RAP inspired

to the modular dominance [27] widely adopted for the

modified MMKP solution. Hence, the EGRAS heuristic

allows to approach the modified MMKP modeling of the

problem with the advantage of discarding the full buffer

approximation needed for the MMKP approach.

4.1. The Extended Greedy Resource Allocation

Scheme (EGRAS)

The Extended Greedy Resource Allocation Scheme

(EGRAS), detailed in Proc. 1 allows to solve the RAP

problem without any limitation in terms of output queues

saturation.

Given the i-th RB we define a vector Fi =

{fi,1, fi,2, . . . , fi,MT } of (MT ) elements. The z-th

element of Fi is a triplet fi,z = (j, l, ηi,j,l) where j ∈

{1, . . . ,M} and l ∈ {1, . . . , T} represent the user and

class index, respectively. The ηi,j,l value represents the

efficiency of a triplet and can been defined as:

ηi,j,l =
vi,j,l

1 + ĉ− ci,j
(5)

where ĉ is the maximum capacity (expressed in bits) of a

RB.

An important difference between EGRAS and other

heuristic approaches based on the modular dominance is

represented by the definition of the efficiency, since in

EGRAS it is not a simple ratio between profits and costs.

In the RAP modeling we introduced a strong correlation

Procedure 2 findMaxEfficiency(z, i)

1: if z =MT and wfi,z [1],fi,z [2] − ci,fi,z [1] ≥ 0 then

2: return fi,z
3: else if z =MT then

4: return (undefined, undefined, 0)
5: end if

6: fi,z+1 ← findMaxEfficiency(z + 1, i)
7: if fi,z[3] > fi,z+1[3] and wfi,z [1],fi,z[2] −
ci,fi,z [1] ≥ 0 then

8: return f i,z

9: else

10: return fi,z+1

11: end if

between mapping costs and profits: in particular, given a

RB, we are interested in transmitting data traffic belonging

to the output queue of the user with the higher mapping

value and cost. For these reasons, in (5), the mapping profit

is 1 + ĉ− ci,j (for a given RB ri ∈ R and user uj ∈ U).

The Proc. 1 computes for each RB ri the triplet

(u∗, q∗, ηi,u∗,q∗) such that the pair (u∗, q∗) guarantees

the maximum efficiency evaluated in the Proc. 2. The

procedures take explicitly into account the constraint (1c),

while (1b) is implicitly verified.

It is possible to note that in a deployed TD-LTE network

RBs and QoS classes (namelyN and T ) can be considered

fixed; for these reasons the EGRAS scheme requires

O(M) comparisons, leading to computational complexity

linearly increasing with respect to the number of users. It

has to be noted that the complexity of EGRAS is lower

respect to the MMKP, that is a NP-hard problem, while is

comparable with the other heuristic approaches introduced

before. However, it has to be noted that we consider a

modified MMKP problem, where the inequality in (1b) is

considered instead of the classical equality in (3b).

5. NUMERICAL RESULTS

The effectiveness of the proposed scheduling scheme will

be validated in this section by resorting to computer

simulations. The performance of the EGRAS method has

been compared with two widely known downlink resource

allocation schemes [2]: the max-C/I and the PF. These

scheduling strategies can be summarized as follows:

• max-C/I - on each TTI it assigns more downlink

resources (in terms of RBs) to the user characterized

6 Wirel. Commun. Mob. Comput. yyyy; 00:1–12 c© yyyy John Wiley & Sons, Ltd.
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by the best instantaneous channel quality. This

implies that the r-th downlink RB will be assigned

to the û-th user such that:

û = argmax
u=1,...,M

CIR(r, u)

where CIR(r, u) is the mean Carrier-to-Interference

Ratio of the u-th user on the r-th RB. In order

to be able to compare the performance with the

EGRAS, the max-C/I proposed in [2] has been

extended for scheduling downlink traffic belonging

to a multi-user and multi-class scenario. Each user

has a single data queue that is obtained by means of

a suitable combination of all the output queues of

that user (referred to data flows with different QoS):

it is filled with traffic belonging to different output

queues proportionally to the relevance of each QoS

class.

• PF - it aims to reach the fairness among the users

by scheduling the UE with the maximum relative

advantage profit [2], defined as the ratio between

the instantaneous data rate Ri of the i-th user and

his average data rate Ri. Moreover, for operating

in a multi-class and multi-user environment, PF has

been properly extended to be able to schedule, not

only a particular user, but also a specific flow type.

In particular, at a given TTI, the r-th downlink RB

will hold data traffic directed to the û-th UE and

belonging to the q̂-th traffic flow type such that:

(û, q̂) = argmax
u=1,...,M
q=1,...,T

Qu,q,r

Qu,q

where Qu,q,r is the amount of bits carried by the

r-th RB holding data belonging to the q-th flow

type and directed to the u-th user and Qu,q is the

total amount of bits transmitted to u-th user and

belonging to the q-th flow type until the present

scheduling instant.

As discussed in Sec. 3, the RAP model and, as a

consequence, the EGRAS scheme are characterized by a

set of parameters; all the numerical results discussed in

this section have been obtained by setting α, β and γ

respectively to 0.4, 0.2 and 0.4 after an extensive set of

computer simulations aiming to optimize such parameters,

and not reported here for space constraints.

eNodeB
u
1

u
2

u
3

u
4

u
M

Figure 1. The multi-user simulation scenario.

In Sec. 3 the reference network scenario is detailed,

and in Tab. II we report the main system parameters

taken into account. Moreover, Tab. III shows the statistical

distributions of the downlink data traffics related to the

five considered service classes, listed in descending order.

The traffic pattern of a service class is characterized by

the statistical distributions† of the packet length, inter-

arrival time and by the maximum sustained delay (defined

as the maximum acceptable end-to-end delay for a packet

belonging to a specific service class). Finally, Tab. III

shows also the considered RAP priorities (Sec. 4).

In Fig. 1 a schematic representation of the considered

scenario is reported, where it is possible to highlight the

presence of multiple users randomly placed within a cell.

In order to highlight the performance of the different

scheduling scheme for the QoS classes characterized by a

higher relevance and, at the same time, to depict in a more

synthetic way the QoS indexes of interest, we have defined

(for a given user u) the composite throughput (Γ̂u), the

composite average delay (Υ̂u) and the composite outage

(Θ̂u). They represent, respectively, the weighted average

throughput, the average delay and the outage probability‡

for each service class:

Γ̂u =

∑T

t=1 Γu,t yt∑T

t=1 yt
(6)

Υ̂u =

∑T

t=1 Υu,t yt∑T

t=1 yt
(7)

Θ̂u =

∑T

t=1 Θu,t yt∑T

t=1 yt
(8)

†Looking at Tab. III: Par(a, b, c) stands for a bounded Pareto with a as a shape

factor, b as the minimum and c as the maximum value, Exp(m) represents an

exponential distribution with a mean value m and Const(c) refers to a constant

value of c.
‡The outage probability of a QoS class is defined as the ratio between the number

of data packets received within the maximum delay and the total number of

generated packets.
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Table II. System parameters.

Parameter Value

LTE system duplexing type TDD

radio frequency carrier 2.6 GHz

bandwidth 10 MHz

number of FFT point 1024

supported MCS QPSK 1/2, 16-QAM 1/2, 64-QAM 1/2

RB size 12 subcarriers × 7 OFDM symbols

channel model vehicular ITU-R A [28]

Table III. Traffic classes characterization.

Service Interarrival Packet lengths Max. delay RAP

Class times [ms] [Byte] budget [ms] priorities

I Par(1.2,0.10,0.50) Par(1.2,20,125) 100 0.38

II Exp(5.43) Par(1.7,466,3000) 200 0.28

III Exp(3.02) Par(1.1,81.5,1500) 300 0.14

IV Exp(40.00) Const(2554) 400 0.11

V Const(0.80) Const(33) 400 0.07

where Γu,l, Υu,l and Θu,l are the throughput, the average

delay and the outages of the traffic belonging to the l-th

QoS class toward the u-th user, respectively. While yn is

the n-th weight computed as yn = 2T+1−n and denotes

the importance of the class (i.e., the relevance of the n-th

QoS class).

The system performance has been investigated in a

scenario characterized by a variable number of active UEs

characterized by different average Signal-to-Noise Ratio

(SNR) levels and downlink channel states. In particular,

we have analyzed the performance of a reference UE by

varying its SNR level, while the SNR levels of the other

UEs have been set (and kept constant) to values belonging

to an exponential distribution with mean value 10 dB.

First of all we aim to compare the exact solution of

the RAP with that obtained by the EGRAS scheme. As

presented in Sec. 4.1, the EGRAS scheme represents an

heuristic method leading to an admissible solution to the

RAP. To this aim, we considered 1000 instances of the

RAP problem, for each of which we evaluated the objective

function (1a), by comparing the exact solution and the

solution provided by the EGRAS heuristic method. The

exact solution of the RAP problem has been derived by

exploiting the version 4.32 of the GLPK solver [29]. It is

worth to notice that the exact solution refers to the solution

of the RAP problem by using the MMKP modeling.

Tab. IV shows, for a variable number of UEs, the

mean (µκ), variance (σ2
κ) and maximum (maxi{κi}) of

Table IV. Mean, variance and maximum of the normalized gap

as function of the number of UEs in the network.

Number of UEs µκ σ2
κ maxi{κi}

[%] [%] [%]

4 3.85 0.04 15.48

6 1.13 0.02 14.12

8 1.03 0.01 17.18

10 0.94 0.01 12.95

12 2.20 0.01 8.21

the normalized gap defined for each instance i-th of the

problem as:

κi =
χi − ψi

χi

(9)

where χi and ψi are the value assumed by the objective

function (1a) when the i-th instance of the RAP is solved

by the optimum solver or by the EGRAS procedure,

respectively. As we can note, the EGRAS performance

is very close to the exact solution: the µκ value is

not greater than 3.85% (with a variance of 0.04%). In

that sense it is possible to conclude that, even if we

can have a sub-optimal solution, the performance can

be considered sufficiently close to the optimum solution,

while the computational cost of the solution algorithm

is drastically reduced. Moreover, the proposed solution

allows to consider the original problem without any

approximation in terms of saturated queues, as for the

MMKP modeling.
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Figure 2. The composite throughput of the reference user as

function of the SNR value.

Figs. 2 and 3 show, respectively, the composite

throughput and average delay of the reference user, in a

network scenario composed by 10 UEs, by considering all

the introduced scheduling schemes: the EGRAS scheme

achieves excellent results, only overcame by the max-

C/I. However, differently from PF and EGRAS, max-C/I

cannot take into account the fairness among the users,

resulting in unbalanced downlink throughput among the

UEs. This aspect is evident in Fig. 4 where the composite

throughput of each user is shown. From this figure we can

note that both EGRAS and PF ensure a fair distribution of

the throughput, while max-C/I, as expected, assigns more

resources to those users characterized by the highest SNR

levels.

It is possible to note that while PF and max-C/I

algorithms have a cross-point, the EGRAS algorithm

allows to maximize the performance for all the considered

SNR values. This is due to the fact that at low SNR values

the other users have, in average, a higher SNR, so that

the max-C/I algorithm is more prone to give them the

resources. On the contrary the PF tries to give the same

resources to all the users for increasing the fairness. At

higher SNR, the reference user has a Channel State better

than the other users, so that the max-C/I algorithm tends to

give it more resources respect to the PF. The cross point at

7.5 dB is an equilibrium point where the reference user

has an SNR almost corresponding to the average SNR

of all the users, leading to similar performance for the

considered algorithms. However, the EGRAS follows the

PF algorithms for low SNR and the max-CI algorithm

for high SNR maximizing the performance in terms of

throughput and delay for all the SNR values.

The performance results in terms of fairness have been

also reported in Fig. 5, where it is possible to note that

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SNR levels [dB]

C
o

p
o

si
te

 a
ve

ra
g

e 
d

el
ay

 [
m

s]

 

 

max-C/I
PF
EGRAS

Figure 3. The composite average delay of the reference user as

function of the SNR value.
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Figure 4. The composite throughput of each user.

the fairness of the EGRAS method is always better respect

to the max-C/I algorithm, while the PF algorithm has

better fairness performance: this is expected because the

PF algorithms works by maximizing the fairness.

Towards this end, we have resorted to the following

formula [30]:

f(x) =

∣∣∣
∑N

i=1 xi

∣∣∣
2

N ·
∑N

i=1 x
2
i

(10)

where xi represents the composite throughput of the i-th

user, i.e., xi = Γi, x is a vector whose components are

the xi values, and N represents the number of users. The

fairness index in (10) has a value between 0 and 1. Note

that f(x) = 1 denotes the best fairness performance and

corresponds to a fair distribution of resource among all

MSs.

However, by considering jointly the throughput and

the fairness performance it is possible to note that the

EGRAS algorithm maximizes the throughput performance

with respect to the two other algorithms with fairness

performance better than the max-C/I alternative.
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(a) The composite fairness index for a variable number of users.
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(b) The composite fairness index for the considered QoS

classes.

Figure 5. The performance in terms of fairness for different

number of users and classes.

The system performance has been also investigated with

a variable number of UEs; in this case the SNR level

of each user has been set (and kept constant) to 10 dB.

In order to better represent the main QoS indexes of the

downlink data traffic we introduce the total composite

throughput (Γ̃) defined as:

Γ̃ =

M∑

u=1

Γ̂u (11)

Fig. 6 shows the total composite throughput; we can

note that also here EGRAS and max-C/I have similar

performance but, as shown in Fig. 7 and Fig. 8, EGRAS

succeeds to manage the quality of service in a better

way. EGRAS, in fact, is characterized by the lowest

composite average delay; this leads to a reduced composite

outage value among the other considered alternatives (in a

network scenario composed by a number of UEs equal to

or grater than 9).

3 5 7 9 11 13 15 17 19
500

1000

1500

2000

Number of UEs

T
o

ta
l c

o
m

p
o

si
te

 t
h

ro
u

g
h

p
u

t 
[k

b
p

s]

 

 

max-C/I
PF
EGRAS

Figure 6. The total composite throughput as function of the

number of UEs for a mean SNR value of 10 dB.
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Figure 7. The average composite delay as function of the

number of UEs for a mean SNR value of 10 dB.
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Figure 8. The average composite outage as function of the

number of UEs for a mean SNR value of 10 dB.

6. CONCLUSION

One of the important characteristics of the modern

broadband wireless communication systems is the support

of multimedia communications among several users even

in mobility. The LTE/LTE-A systems are designed to meet

these requirements, however, when the number of users

and application increases, each one with a specific QoS

level, the complexity of the resource allocation problem

increases. The aim of this paper is to present a possible

solution to the resource allocation problem by exploiting

10 Wirel. Commun. Mob. Comput. yyyy; 00:1–12 c© yyyy John Wiley & Sons, Ltd.

DOI: 10.1002/wcm

Prepared using wcmauth.cls



G. Bartoli et al. Downlink Cross-layer Scheduling Strategies for LTE and LTE-Advanced Systems

the MMKP modeling under specific assumptions. Due to

the complexity of the MMKP model, we have focused on

a suitable heuristic solution allowing to have performance

close to the optimal solution of the MMKP problem whit

a lower complexity. The effectiveness of the solution has

been also proved by considering the performance results

in a realistic scenario where multiple users with different

multimedia traffic also in terms of QoS classes have

been considered. The results have been compared to those

obtained with the PF and max-C/I algorithms showing the

effectiveness of the proposed solution.

A. PROOF OF THE LEMMA 1

Proof

Let

F : {1, . . . , (M T )} −→ {1, . . . ,M} × {1, . . . , T}

be a bijective function, for î = 1, . . . , N , ĵ = 1, . . . ,M ,

l̂ = 1, . . . , T , ĥ = 1, . . . , (M T ) and k̂ = 1, . . . , (M T ),

without any loss of generality we have that:

• the xî,ĵ,l̂ of RAP, for F (ĥ) = (ĵ, l̂), can be

rewritten as xî,ĥ;

• the length of the output queue associated to the ĵ-th

user, holding traffic belonging to the l̂-th QoS class,

for F (k̂) = (ĵ, l̂) can be also rewritten as wk̂;

Let the rî,ĥ,k̂ parameter be defined as

rî,ĥ,k̂ =

{
cî,ĵ if F (ĥ) = F (k̂) = (ĵ, l̂)

0 otherwise.
(12)

the MRAP problem can be equivalently rewritten as

follows:

max
xi,h

{
N∑

i=1

M T∑

h=1

xi,hvi,h

}

subject to

N∑

i=1

M T∑

h=1

xi,hri,h,k ≤ wk k = 1, . . . , (M T ) (13)

M T∑

h=1

xi,h = 1 i = 1, . . . , N

xi,h ∈ {0, 1} i = 1, . . . , N , h = 1, . . . , (M T )
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