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Rethinking the Intercept Probability
of Random Linear Network Coding

Amjad Saeed Khan, Andrea Tassi and Ioannis Chatzigeorgiou

Abstract—This letter considers a network comprising a trans-
mitter, which employs random linear network coding to encode
a message, a legitimate receiver, which can recover the mes-
sage if it gathers a sufficient number of linearly independent
coded packets, and an eavesdropper. Closed-form expressions for
the probability of the eavesdropper intercepting enough coded
packets to recover the message are derived. Transmission with
and without feedback is studied. Furthermore, an optimization
model that minimizes the intercept probability under delay and
reliability constraints is presented. Results validate the proposed
analysis and quantify the secrecy gain offered by a feedback link
from the legitimate receiver.

Index Terms—Network coding, fountain coding, physical layer
security, secrecy outage probability, intercept probability.

I. INTRODUCTION

In the context of networks and protocols, network coding [1]
has been widely recognized as an intriguing technique to im-
prove network performance. It can considerably reduce trans-
mission delay, processing complexity and energy consumption,
and has the potential to significantly increase throughput and
robustness [2]. Therefore, it has been studied for use in many
applications, including large scale content distribution in peer-
to-peer networks [3] and data transmission in sensor networks
or delay tolerant networks [4]. Due to the broadcast nature
of wireless channels, networks are vulnerable to security
attacks, such as wiretapping and eavesdropping. The problem
of achieving secure communication in systems employing
network coding has recently attracted the attention of the
research community in wireles networks. Ning and Yeung [5]
first formulated the concept of secure network coding, which
avoids information leakage to a wiretapper. They imposed a
security requirement, that is, the mutual information between
the source symbols and the symbols received by the wiretapper
must be zero for secure communication. Based on a well-
designed precoding matrix, Wang et al. [6] proposed a secure
broadcasting scheme with network coding to obtain perfect
secrecy. Probabilistic weak security for linear network coding
was presented in [7], which devised network coding rules that
can improve security depending on the adopted field size, the
number of transmitted symbols and the ability of the attacker
to eavesdrop on one or more independent channels.
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Figure 1. Block diagram of the system model, where εB and εE denote the
erasure probabilities of the channels linking Alice to Bob and Alice to Eve,
respectively.

Recently, the intercept probability of fountain coding, which
is equivalent to random linear network coding for wireless
broadcast applications, was formulated in [8]. Our work has
been inspired by the methodology in [8] but differs in two
major points. Firstly, we have revisited the derivation of the in-
tercept probability. More specifically, the decoding probability
of a receiver has been taken into account in our calculations.
Furthermore, key probability expressions have been revised
to accurately reflect (i) the effect of the size of the finite
field over which network coding is performed, (ii) the impact
of a feedback link between the legitimate receiver and the
transmitter, and (iii) the fact that the number of transmitted
coded packets cannot be infinite in practice. The second
difference is that [8] proposed an optimization model with
respect to the number of source packets composing a message.
However, the number of source packets and, by extension,
their length are often dictated by the provided service. Our
objective is to minimize the intercept probability by optimizing
the number of transmitted coded packets, under delay and
reliability constraints. As part of the optimization process, we
prove that awareness of the existence of an eavesdropper is
not required by the transmitter and the legitimate receiver.

II. SYSTEM MODEL

We consider a network configuration whereby a source
(Alice) wishes to transmit a message to a legitimate destination
(Bob) in the presence of a passive eavesdropper (Eve), as
shown in Fig. 1. Before initiating the communication process,
Alice segments the message into K source packets and em-
ploys Random Linear Network Coding (RLNC) to generate
and broadcast N ≥ K coded packets. The links connecting
Alice to Bob and Alice to Eve are modeled as packet erasure
channels characterized by erasure probabilities εB and εE,
respectively. As per the RLNC requirements, Bob and Eve
can recover the message only if they collect at least K linearly
independent coded packets.

Based on this setup and the general condition that εB < εE
for physical layer security, we consider two network coded
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transmission modes, which we refer to as Feedback-aided
Transmission (FT) and Unaided Transmission (UT). In the FT
mode, Alice broadcasts up to N coded packets but ceases
transmission as soon as Bob sends a notification over a
perfect feedback channel acknowledging receipt of K linearly
independent coded packets. In the case of UT, a feedback
channel between Bob and Alice is not available, therefore
Alice broadcasts exactly N coded packets anticipating Bob
to successfully recover her message. In both modes, the
communication process is considered to be secure if Eve fails
to reconstruct Alice’s message. In the rest of this letter, we will
investigate the resilience of FT and UT to the interception of
K linearly independent coded packets by Eve.

III. PERFORMANCE ANALYSIS

The physical layer security offered by the two transmission
modes will be quantified by the probability that Eve will
manage to recover the message. To derive this probability,
which is known as the secrecy outage probability or the
intercept probability, we will first consider the general case
of point-to-point communication between Alice and a receiver
D over an erasure channel with erasure probability εD. Note
that D can be either Bob or Eve, i.e., D ∈ {B,E}. If Alice
transmits N ≥ K coded packets and the receiver retrieves
nR coded packets, where K ≤ nR ≤ N , the probability that
the receiver will successfully recover the K source packets is
given by [9]

P (nR,K) =
K−1∏
i=0

[
1− q−(nR−i)

]
, (1)

where q is the size of the finite field over which network coding
operations are performed. Let X be a random variable that
represents the number of transmitted coded packets for which
the receiver can recover the K source packets. The Cumulative
Distribution Function (CDF) of X describes the probability
that the receiver will recover the K source packets after nT
coded packets have been transmitted, where K ≤ nT ≤ N .
This CDF can be obtained by averaging (1) over all valid
values of nR, that is,

FD(nT) = Pr {X ≤ nT}

=

nT∑
nR=K

(
nT

nR

)
(1− εD)nRεnT−nR

D P (nR,K).
(2)

The probability that the receiver will recover the K source
packets when the nT-th coded packet has been transmitted, but
not earlier, is given by the Probability Mass Function (PMF)
of X , which can be derived as follows:

fD(nT) = Pr {X = nT}

=

{
FD(nT)− FD(nT − 1), if K < nT ≤ N

FD(K), if nT = K.

(3)

Let us now return our focus to the considered network
configuration operating in the FT mode. Recall that Bob sends
an acknowledgement to Alice when he receives K linearly
independent coded packets and can thus recover the source

message. The intercept probability can be expressed as the
sum of two constituent probabilities:

P FT
int (N) = PBE(N) + P E(N). (4)

The first term of the sum in (4), PBE(N), denotes the probabil-
ity that both Bob and Eve will recover the message. This can
happen if Bob decodes the message only after the nT-th coded
packet has been transmitted, while Eve has already recovered
the message or recovers it concurrently with Bob. Invoking the
definitions in (2) and (3), and considering all possible values
of nT, we can express PBE(N) as

PBE(N) =
N∑

nT=K

fB(nT)FE(nT). (5)

The second term of the sum in (4), P E(N), represents the
probability that Eve will be successful in recovering the mes-
sage but Bob will fail to decode it after Alice has transmitted
the complete sequence of N coded packets. Using the CDF
of the number of coded packets delivered by Alice to Eve and
Bob, respectively, we can write P E(N) as follows:

P E(N) = FE(N) [ 1− FB(N) ] . (6)

We should stress that (5) and (6) are exact only if the sequence
of coded packets delivered over the Alice-to-Bob link is
independent of the sequence delivered over the Alice-to-Eve
link. This is a common hypothesis in the literature of broadcast
networks, e.g., [8] and [10], and is valid for a non-vanishing
product between the number of coded packets transmitted over
a channel and the erasure probability of that channel [11]. The
accuracy of (4) will also be demonstrated in Section V.

In the case of UT, a feedback channel is not available
between Bob and Alice, therefore Alice transmits the complete
sequence of N coded packets uninterruptedly. Therefore, the
intercept probability is simply equal to the probability that Eve
will recover the message after Alice has transmitted N coded
packets. Using the definition of the CDF in (2), we obtain

P UT
int (N) = FE(N). (7)

Manipulation of the expression for P FT
int (N), as shown in

Appendix A, and subtraction of P UT
int (N) from it, yields

P FT
int (N)− P UT

int (N) = −
N∑

nT=K+1

fE(nT)FB(nT − 1). (8)

Expression (8) measures the loss in the intercept capability
of Eve or, equivalently, the gain in secrecy by Bob, if Bob
can acknowledge the recovery of the source message to Alice
using a feedback channel.
Remark. In this letter, we assume that Alice has knowledge of
the average channel conditions, characterized by the erasure
probability, between her and Bob. If Alice could sense the
instantaneous channel quality and transmitted coded packets
only when the channel quality warranted their error-free deliv-
ery to Bob, as in [8], [12], the equivalent erasure probability of
the link between Alice and Bob would be εB = 0. In that case,
Alice could generate exactly K linearly independent coded
packets in a deterministic manner, as opposed to random, and
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Figure 2. Comparison between analytical and simulation results for FT and
UT, when εE ∈ [0.1, 0.5], εB = {0.01, 0.03, 0.05, 0.07, 0.09}, K = 50,
N̂ = 150, q = 2 and P̂ = 90.

forward them to Bob. As a result, the intercept probability
would reduce to (1− εE)

K regardless the transmission mode.
This remark concurs with the conclusion of [8] that an arbitrar-
ily small intercept probability can be achieved by increasing
the value of K, but at the cost of increased delay.

IV. OPTIMIZATION MODEL

This section aims to determine the optimum value of N , i.e.,
the number of coded packet transmissions, that minimizes the
intercept probability, provided that a hard deadline is met. This
hard deadline, denoted by N̂ , represents the number of coded
packet transmissions that Alice is not allowed to exceed. In
addition, the proposed optimization strategy permits Bob to
recover the message with a target probability P̂ . In the rest of
this letter, both FT and UT will be optimized by the Resource
Allocation Model (RAM), which is defined as follows:

(RAM) min
N

Pint(N) (9)

subject to FB(N) ≥ P̂ (10)

N ≤ N̂ (11)

where the objective function (9) represents the intercept
probability when N coded packets have been scheduled for
transmission. Constraint (10) ensures that the probability of
Bob recovering the message is at least P̂ , while constraint (11)
imposes that the number of planned coded packet transmis-
sions is less than or equal to N̂ .

The proof of the following proposition will contribute to the
solution of the RAM problem.

Proposition 1. The intercept probability Pint(N) is a non-
decreasing function of N , i.e.,

Pint(N1) ≤ Pint(N2) for all N1 ≤ N2. (12)

Proof: One of the properties of CDFs is that they are non-
decreasing functions and, as per (7), the intercept probability
of UT is equal to a CDF. In the case of FT, the subtraction
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Figure 3. Contour map (solid lines) depicting the loss in intercept probability
caused by the change from UT to FT, as a function of εE and εB. The value
of N∗ (dashed line) as a function of εB has been superimposed on the plot.

of Pint(N1) from Pint(N2) for N2 ≥ N1 gives a sum of
non-negative terms, as shown in Appendix B. Therefore,
Pint(N2)− Pint(N1)≥0, which concludes the proof.

We can now proceed to Proposition 2 and provide a de-
scription of the solution to the RAM problem.

Proposition 2. If the RAM problem admits a solution, the
optimum solution is

N∗ = argmin
{
N ∈ [K, N̂ ]

∣∣ FB(N) ≥ P̂
}
. (13)

Proof: Let N∗ denote the smallest value of N in the
interval [K, N̂ ] for which constraint (10) holds. If an integer
value smaller than N∗ is selected, for example N∗ − 1, the
intercept probability will reduce, as per Proposition 1, but
constraint (10) will not be met. We thus conclude that N∗

is the optimum solution to the RAM problem.
Root-finding algorithms, such as the bisection method, can

be used on the right-hand side of (13) to determine if N∗

exists and identify its value. Based on this analysis, we showed
that minimization of the intercept probability under delay
and reliability constraints can be achieved by minimizing the
number of transmitted coded packets. Thus, Alice should know
the erasure probability of the channel between her and Bob but
knowledge of the presence of an eavesdropper is not necessary.

V. NUMERICAL AND ANALYTICAL RESULTS

This section compares the derived analytical expressions
with simulation results, establishes their validity and obtains
solutions to the RAM problem for various channel conditions.

Fig. 2 depicts the relationship between the intercept proba-
bility and the quality of Bob’s and Eve’s channels, represented
by εB and εE, respectively. For each point, the value of
the N coded packet transmissions was optimized by RAM
for K = 50 source packets, N̂ = 150 maximum allowable
coded packet transmissions, a field size of q = 2 and a
target probability of Bob recovering the source message equal
to P̂ = 90%. In simulations, Alice broadcasts the optimal
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number of coded packets determined by RAM. Instances
where Eve successfully recovers K linearly independent coded
packets are counted and averaged over 104 realizations to ob-
tain the intercept probability. We observe the close agreement
between analytical and simulation results, which confirms the
tightness of (4) and (7). Fig. 2 also shows that when the
channel quality between Alice and Eve is significantly worse
than the channel quality between Alice and Bob, the intercept
probability is close to zero for both FT and UT. As expected,
the intercept probability increases when the two channels
experience identical or relatively similar conditions but FT
offers a clear advantage over UT. For example, for εB = 0.09
and εE = 0.1, the intercept probability will reduce from 68%
to 45% if the mode of operation switches from UT to FT. The
reduction in the intercept probability due to the adoption of
FT becomes pronounced when εE drops below 0.25.

Fig. 3 quantifies the loss in intercept probability or, equiv-
alently, the gain in secrecy that occurs by changing the
operational mode from UT to FT, as noted in (8). The optimum
value of N , denoted by N∗, has also been plotted in Fig. 3
(secondary y-axis on the right-hand side of the plot). Observe
that as εB increases from 0.01 to 0.1, Alice increases the coded
packet transmissions from 54 to 59 in an effort to maintain the
probability of Bob recovering the source message at P̂ = 90%.
Notice the abrupt change in the intercept probability each time
RAM generates a new optimum value for N , based on εB.

A way to reduce the intercept probability, especially in
settings where the values of εB and εE are similar, has been
hinted in the Remark. If Alice can measure the instantaneous
quality of the channel between her and Bob and transmits
coded packets only when the measured quality is above an
acceptable threshold, the effective value of εB will be reduced
and the intercept probability will drop at the expense of delay.

VI. CONCLUSION

We derived accurate expressions for the intercept probability
of a network, where a transmitter uses random linear network
coding to broadcast information. Both unaided transmission
and feedback-aided transmission were investigated and the
secrecy gain achieved by the latter approach was computed.
We presented a resource allocation model to minimize the
intercept probability, while satisfying delay and reliability
constraints, and showed that the legitimate receiver is not
required to have knowledge of the presence of an eavesdrop-
per. Theoretical and simulation results identified the channel
erasure probabilities for which feedback-aided transmission
offers a lower intercept probability than unaided transmission
when the proposed resource allocation model is applied.

APPENDIX

A. Reformulation of the intercept probability of FT
Based on the definition of the PMF in (3), the expression

for PBE(N) in (5) can be expanded as follows:

PBE(N) = FB(K)FE(K)

− FB(K)FE(K + 1) + FB(K + 1)FE(K + 1)

− . . .

− FB(N − 1)FE(N) + FB(N)FE(N).

If we create pairs from each two consecutive terms, with the
exception of the last term, and invoke again the definition of
the PMF, we obtain

PBE(N) =

[
−

N∑
nT=K+1

fE(nT)FB(nT − 1)

]
+ FB(N)FE(N).

In (6), we established that P E(N) = FE(N)− FB(N)FE(N).
Using (4), the intercept probability of FT can be expressed as:

P FT
int (N) = FE(N)−

N∑
nT=K+1

fE(nT)FB(nT − 1). (14)

B. Proof of Proposition 1 for the case of FT
In order to prove Proposition 1 for the FT mode, it suffices

to set ∆ = Pint(N2) − Pint(N1) and show that ∆ ≥ 0 for all
N2 ≥ N1. Using (14), we find that

∆ = FE(N2)− FE(N1)−
N2∑

nT=N1+1

fE(nT)FB(nT − 1). (15)

Terms −FE(i) and FE(i) for i = N1 + 1, . . . , N2 − 1, which
cancel each other out, are added to FE(N2)−FE(N1) and give

FE(N2)− FE(N1) = (FE(N2)− FE(N2 − 1)) + . . .

. . .+ (FE(N1 + 1)− FE(N1))

=

N2∑
nT=N1+1

fE(nT).

(16)

If we substitute (16) into (15), we obtain

∆ =

N2∑
nT=N1+1

fE(nT)
[
1− FB(nT − 1)

]
which is a sum of non-negative terms and is, thus, ∆ ≥ 0.
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