
Performance Assessment of Fountain-coded
Schemes for Progressive Packet Recovery

Andrew L. Jones, Ioannis Chatzigeorgiou and Andrea Tassi
School of Computing and Communications

Lancaster University, United Kingdom
Email: {a.jones2, i.chatzigeorgiou, a.tassi}@lancaster.ac.uk

Abstract—Fountain codes are gradually being incorporated
into broadcast technologies, such as multimedia streaming for
4G mobile communications. In this paper, we investigate the
capability of existing fountain-coded schemes to recover a fraction
of the source data at an early stage and progressively retrieve the
remaining source packets as additional coded packets arrive. To
this end, we propose a practical Gaussian elimination decoder,
which can recover source packets “on-the-fly”. Furthermore,
we introduce a framework for the assessment of progressive
packet recovery, we carry out a performance comparison of
the investigated schemes and we discuss the advantages and
drawbacks of each scheme.

Keywords—fountain coding; sliding window; Gaussian elimi-
nation; erasure channel; multicast communication.

I. INTRODUCTION

Network layer protocols traditionally partition data into
multiple packets and then repeatedly transmit them until
they are successfully received. This approach requires the
implementation of a feedback channel in which the receiver
can request the retransmission of corrupted packets. Fountain
codes, initially proposed in [1], do away with a dedicated
feedback channel and ease wastefulness of resources by trans-
mitting random linear combinations of source packets. The
first practical implementation of fountain codes was LT codes
[2] but it was not until the invention of Raptor codes [3]
that the fountain principle found its way to recent standards,
such as Long Term Evolution (LTE) [4] and Digital Video
Broadcasting for Handheld devices (DVB-H) [5].

Even though fountain codes can be applied to a diverse
set of reliability-focused applications, such as voice commu-
nications and data storage, they are not well suited to mission-
critical or latency-intolerant applications. As randomness is an
integral part of their design, there is no guarantee that source
packets will be recovered in the correct order. Furthermore,
the decoding process can only begin when a sufficiently large
number of coded packets have been received; therefore, a
receiver cannot obtain an early estimate of the source data
and gradually refine them as additional packets are recovered.

Sliding-window fountain codes, which were proposed in
[6] and extended in [7], incur a small performance penalty
compared to “windowless” fountain codes, but address the
issues of unordered packet recovery and limited memory stor-
age at the receiving side. Nevertheless, the authors considered
an erasure-free channel and a non-negative overhead, that

is, decoding is initiated when the number of received coded
packets is at least equal to the number of source packets.

The motivation for our work is to modify the on-the-fly
Gaussian elimination decoder [8], so that source packets can
be extracted from the pool of received coded packets as soon
as possible. Partial recovery of the source data will provide
an early insight into their information content. Full recovery
will be progressively achieved as additional coded packets are
received and added to the pool. As part of our objectives,
we also propose and utilise a framework, which assesses the
capability of schemes to progressively recover the source data
for communication over erasure channels.

The remainder of this paper has been organised as follows.
Section II describes the three schemes under investigation,
namely conventional fountain coding, sliding-window fountain
coding and systematic fountain coding. Section III presents
the Gaussian elimination decoder, proposes a modification
that allows source data to be progressively recovered and
explains in detail the decoding process. The performance
assessment framework and a simple uncoded transmission
scheme, which will be used as a benchmark, are introduced
in Section IV. Performance comparisons are presented and
discussed in Section V whereas the main findings of the paper
are summarised in Section VI.

II. REVIEWED FOUNTAIN-CODED SCHEMES

In this section, we describe the fountain-coded schemes
under consideration. In all cases, a message comprising K
source packets s1, s2, . . . , sK , is input to an encoder. The
encoder generates N packets, t1, t2, . . . , tN , and transmits
them over a broadcast erasure channel without feedback.

A. Conventional Fountain Coding

The encoder of a Conventional Fountain Code (CFC) con-
structs coded packet tn at time step n, where n = 1, . . . , N ,
from the linear combination or, equivalently, the bitwise sum
of source packets as follows

tn =

K∑
i=1

gn,i si (1)

where gn,i is a binary coding coefficient selected in an
uniformly random manner. It is worth noting that we have
chosen to employ a random distribution in order to examine
the worst-case performance of fountain coding. In the rest of



s1 s2 sK. . .

Window

s1 s2 sK. . .

w

δ w

s3 s4 s5 s6

s3 s4

Fig. 1. Sliding window scheme as proposed in [6], [7]. In this representation,
w = 4 and δ = 2, so every window is encoded over for 4 transmissions.

the paper we impose that binary coefficients associated to a
coded packet cannot all be simultaneously null.

B. Systematic Fountain Coding

The Systematic Fountain Code (SFC) combines both un-
coded and coded packet transmissions. In particular, the SFC
that we considered sequentially transmits each of the K source
packets uncoded (referred to as systematic packets). As soon
as every source packet has been transmitted once, the scheme
behaves like a CFC. Using (1), the considered SFC encoder
produces a stream of systematic/coded packets where the n-th
transmitted packet can be defined as follows

tn =


sn if n ≤ K
K∑
i=1

gn,i si otherwise.
(2)

C. Sliding Window Fountain Coding

The Sliding Window FC (SWFC) scheme considers a fixed
window of size w that is moved along the source message
by δ packets after w coded packets have been transmitted
over each window, as shown in Fig. 1. As the sliding window
is moving along the source message chronologically, it may
be possible to recover a subset of the source message before
fully recovering the whole source packet stream. In order to
maximise the probability that at least M source packets are
recovered as soon as possible, we set w and δ to M and
M/2, respectively. The considered w value allows the SWFC
scheme to initially resemble a miniature fountain code, as the
first window will be encoded over for w transmissions.

Formally, let s` and sr be the leftmost and rightmost source
symbol encompassed by the window, respectively. As long as
r < K, the n-th coded packet can be defined as follows

tn =

r∑
i=`

gn,i si (3)

where

`
.
= δ

⌊n− 1

w

⌋
+ 1 (4)

and r
.
= ` + w − 1, where b·c denotes the integer part of a

number. For r = K, we let the SWFC scheme default to CFC,
thus the expression of tn is provided by (1).

III. DECODING FOR PROGRESSIVE PACKET RECOVERY

In this paper we employ a customised implementation of the
On-the-Fly Gaussian Elimination (OFGE) decoding process
proposed by V. Bioglio et al. [8]. The OFGE process was
chosen as it offers either an improved decoding time or a
more accurate solution, when compared to other decoding
algorithms for fountain coding such as iterative belief propa-
gation [2] and incremental Gaussian elimination [9].

In its original version, the OFGE process waits for enough
innovative coded packets (namely, K linearly independent
coded packets) to produce a full rank upper triangular matrix
so that every source packet could be recovered by an efficient
back substitution phase. This partially conflicts with the objec-
tives of the paper, as we aim to recover some source packets
before K linearly independent packets have been received. To
this end, our version of the OFGE algorithm, as presented in
the rest of this section, is characterised by a XORing phase
that leads to the recovery of a fraction of the source packets
before the reception of K coded packets.

In order to describe the modified OFGE implementation, it
is worthwhile to provide the following definitions:

• let G be a K ×K matrix and G[t] be its t-th row;
• let gi be the i-th received vector of coding coefficients;
• let us define the degree of gi as the number of non-zero

components of the vector;
• let I(gi) be the index of the leftmost vector component

equal to 1 in gi.
The proposed OFGE algorithm consists of three phases:
1. TRIANGULARISATION PHASE

(i) If G[I(gi)] is empty then insert gi into G[I(gi)] and
move to the back-substitution phase.

(ii) If the degree of G[I(gi)] is greater than the degree of
gi, swap the I(gi)-th row with gi. Otherwise, replace
gi with gi ⊕G[I(gi)].

(iii) If the degree of gi is greater than 0 go back to (i).
Otherwise, move to the back-substitution phase.

2. BACK-SUBSTITUTION PHASE

(i) Define a temporary matrix L which is equal to G.
(ii) For any a which goes from K to 1 perform the

following steps:
(a) Set to 0 all the elements of the matrix L which

belong to the j-th column (for any j such that sj
has been already recovered).

(b) If L[a] has a degree of 1 then the I(L[a])-th
source packet is recovered.

3. XORING PHASE

(i) For any c and d which go from K to 2 and c− 1 to
1, respectively, perform the following steps:
(a) If G[c] ⊕ G[d] has a degree of 1, the packet
I(G[c]⊕G[d]) is recovered. Otherwise, if d > 1,
for any e that goes from d− 1 to 1.
• If G[c] ⊕G[d] ⊕G[e] has a degree of 1, the

packet I(G[c]⊕G[d]⊕G[e]) is recovered.
(ii) Move to the back-substitution phase and exit.



To give an example of the progressive OFGE decoding
process, if the first coded packet that we receive is associated
with the coding vector g1 = [0, 0, 1, 1, 1] (namely, it is a
linear combination of s3, s4 and s5), the OFGE process will
place g1 straight into G[3], as G[3] is currently empty. If
g2 = [1, 1, 0, 1, 0] is then received, as I(g2) = 1 and G[1] is
empty, g2 will be inserted straight into G[1]. At this point, G
looks like the left side of the following relationship

1 1 0 1 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

 Recv. g3−−−−−→


1 1 0 1 0
0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

. (5)

Then, if g3 = [1, 0, 1, 0, 1] then, as I(g3) = 1 and G[1]
already contains a coding vector of lesser or equal degree,
g3 is replaced by g3 ⊕ G[1] = [0, 1, 1, 1, 1]. And as I(g3)
is now 2 and G[2] is empty, the new value of g3 is inserted
directly into G[2], namely, the right side of (5). During the
XORing phase, the combination of G[3]⊕G[2] = [0, 1, 0, 0, 0]
will be considered. Hence, source packet s2 will be marked
as recovered.

Let us imagine that g4 = [0, 1, 1, 0, 0] is now received. As
I(g4) = 2 and G[2] contains a encoding vector of greater
degree, g4 is swapped with G[2]. As g4 has a greater degree
than G[2], g4 is replaced by g4 ⊕G[2] = [0, 0, 0, 1, 1]. Now
I(g4) = 4 and G[4] is empty, so g4 is inserted straight into
G[4]. As a consequence, G is equal to the left side of the
following relationship

1 1 0 1 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0

 Recv. g5−−−−−→


1 1 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

. (6)

Matrix G is then passed to the back-substitution phase which,
as s2 has already been recovered, finds that G[2] has a degree
of 1. Source packet s3 is now marked as recovered. If the
next received vector is g5 = [0, 0, 1, 0, 1], it is immediately
swapped with G[3] because of its lesser degree. Vector g5

now has a degree larger than that of G[3], so g5 is replaced by
g5 ⊕G[3] = [0, 0, 0, 1, 0]. Now I(g5) = 4 and G[4] contains
an encoding vector of greater degree, so g5 is swapped with
G[4]. The vector g5 now has a degree larger than that of G[4],
so g5 is replaced by g5 ⊕G[4] = [0, 0, 0, 0, 1]. As I(g5) = 5
and G[5] is empty, g5 is inserted straight into G[5].

At this stage, G has assumed the form in the right side
of (6); it is then passed to the back-substitution phase which
finds rows of degree 1 whilst examining G[4] and G[5].
Source packets s4 and s5 are now marked as recovered. As
all instances of the recovered packets in matrix L have been
set to 0, the back-substitution phase will also recover s1.

IV. PERFORMANCE ASSESSMENT FRAMEWORK

Throughout this paper we consider packet transmission over
a broadcast erasure channel without feedback. As it is often

assumed, the probability p of a packet erasure captures the
average quality of both the communication channel and the
underlying error-correcting capability of the physical layer.
In this section, we introduce a method for assessing the
capability of a scheme to progressively recover packets. Prior
to this, we define two useful performance metrics and compute
them for ordered uncoded transmission. This will be used as
a benchmark for the performance comparison of the afore-
mentioned fountain-coded schemes.

A. Performance Metrics

We denote the probability that all K source packets have
been successfully recovered at the destination, when N ≥ K
packets have been transmitted, as PK(N). This metric mea-
sures the capability of transmission schemes to recover the full
source message as soon as a sufficient number of packets (at
least K) has been broadcast.

On the other hand, PK,M (N) shall signify the probability
that at least M source packets from subset {s1, . . . , sm}
have been recovered, given that packets t1, t2, . . . , tN have
been transmitted, where M ≤ m ≤ min(K,N). Metric
PK,M (N) measures the capability of a scheme to retrieve
and possibly use – immediately after reception – a fraction of
the source packets, which either precede or are contemporary
with the last transmitted packet. For example, assume that a
message comprises source packets s1, . . . , s10 and the encoder
transmits packets t1, . . . , t6 in six time steps. The proposed
metric focuses on the recovery of some or all source packets
from subset {s1, . . . , s6}, even if source packets that come
after t6 in time have been recovered at the destination.

B. Ordered Uncoded Transmission

Having defined PK(N) and PK,M (N), we shall now obtain
closed-form expressions for the case of Ordered Uncoded
(OU) transmission, which will be used as a performance
benchmark in our study. Note that the term uncoded trans-
mission implies that the transmitted packets are not linear
combinations of the source packets. In OU transmission, the
K source packets are sequentially transmitted and periodically
repeated. At time step n = jK + i, the transmitted packet is

tjK+i = si, for j ≥ 0 and i = 1, . . . ,K. (7)

If the allocated transmission energy and time are sufficient
to broadcast N = αK + β packets, where α, β are non-
negative integers, we understand that (α+1) copies of packets
s1, . . . , sβ and α copies of packets sβ+1, . . . , sK will be
transmitted. The probability of recovering all source packets
at the destination is the probability that at least one copy of
each of the first β and the last (K − β) source packets will
be received, that is

PK(N) =
(

1− pα+1
)β (

1− pα
)K−β

. (8)

Parameters α and β can be expressed in terms of N and K as
α = bN/Kc and β = (N mod K), where mod denotes the
modulo operation.



20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
,M

(N
)

 

 

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(a) M = 20

40 80 120 160 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
(N

)

 

 

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(b) M = 40

Fig. 2. Performance validation of OU transmission for K = 40, different
values of p and (a) partial message recovery (M = 20) or (b) full message
recovery (M = 40).

We now alter our focus from the recovery of the full set of
source packets to the retrieval of a smaller set of m packets,
where M ≤ m ≤ min(K,N). After some manipulation,
we arrive at the following expression for the probability of
recovering a specific instance of exactly m packets, provided
that h ≥ 0 of them are among the first β packets and the
remaining (m− h) occupy the last (K−β) positions,

f(m,h) =
(

1− pα+1
)h (

1− pα
)m−h

pα(K−m)+β−h. (9)

The probability of recovering at least M source packets can
be obtained from (9) for all valid values of m and h, that is

PK,M (N) =

K∑
m=M

hmax∑
h=hmin

(
β

h

)(
K − β
m− h

)
f(m,h) (10)

where hmin = max(0,m−K+β) and hmax = min(β,m). We
note that the upper limit on m can be relaxed from min(K,N)
to K; in the event of N ≤ m < K, f(m,h) will be zero and
all unnecessary terms in (10) will be eliminated.

Fig. 2 compares analytical results with simulation results for
K = 40 source packets and different values of erasure proba-
bility p. We observe in Fig. 2a that expression (10) accurately
determines PK,M (N) which, in this example, corresponds to
the probability of recovering at least half of the source packets
(M = 20) in the correct order. Similarly, simulation results for
PK(N) are in agreement with the values obtained from (8),
as shown in Fig. 2b. As expected, PK(N) can be seen as a
special case of PK,M (N) for M = K.

C. Assessment of Progressive Packet Recovery

Let P̂ be the predetermined target probability of packet
recovery for a transmission scheme. In order to assess the
capability of that scheme to progressively recover the source
message of K packets, we use N̂ ≤ N to represent the
minimum number of transmitted packets that are required

TABLE I
VALUES OF N̂ AND ∆N FOR OU TRANSMISSION, K= 40, M = 20,

P̂ = 0.9 AND DIFFERENT VALUES OF p.

p N̂ ∆N

0.10 24 89

0.15 26 105

0.30 33 166

for the recovery of at least M source packets with pro-
bability PK,M (N̂) ≥ P̂ . Furthermore, we denote as ∆N
the minimum number of additional packets that need to be
transmitted to recover all K source packets with probability
PK(N̂ + ∆N) ≥ P̂ .

For fixed values of K, M and P̂ , the smaller the value of
N̂ is, the faster the partial recovery of the source message
will be. We also deduce that a small value of ∆N indicates
that the transmission scheme under investigation needs only
a few extra packets to make a transition from the partially
retrieved message to the fully recovered message for the same
probability P̂ .

An example is given in Table I for OU transmission, K= 40,
M = K/2 = 20 and P̂ = 0.9. The depicted values of N̂ and
∆N generate probabilities PK,M (N̂) and PK(N̂ + ∆N) that
approach from above and are as close as possible to 0.9. They
can both be obtained from Fig. 2 or derived from expressions
(8) and (10). As shown in Table I, half or more of the source
packets can be retrieved with probability 0.9 from a reasonably
small number of transmitted packets N̂ . However, progressive
packet recovery incurs a significant delay; we observe that the
number of additional transmitted packets ∆N for the recovery
of all source packets with probability 0.9 is markedly high.
Note that ∆N increases considerably with an increase in the
erasure probability p.

V. RESULTS AND DISCUSSION

The responses of the reviewed schemes for K = 20 and
p = {0.05, 0.1}, are shown in Fig. 3. It is apparent for this
scenario that, with the aforementioned erasure channel, the
SFC scheme is most appropriate. This is because SFC not only
outperforms SWFC and CFC in terms of progressive packet
recovery (lower N̂ values in Table II), but also SWFC and OU
if we consider full packet recovery (lower N̂ + ∆N values in
Table II).

If we consider the SWFC scheme, which combines w
source packets throughout the initial K transmissions, it can
be noted that this scheme is more tolerant of the higher erasure
probabilities. In other words, the progressive performance of
this scheme degrades slower than SFC and OU when the
erasure probability is increased. For example, for K = 20
and N = 10, it can be seen in Fig. 3 that the increase in
erasure probability reduces PM,K of SFC and OU by ≈ 25%
and PM,K of SWFC by only ≈ 7%.

Similar trends can also be observed in Fig. 4, for K = 40.
The capability of each reviewed scheme to progressively
recover source packets has been summarised in Table II. Note



10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f 
re

co
v
er

y

N

 

 

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(a) p = 0.05

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f 
re

co
v
er

y

N

 

 

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(b) p = 0.1

Fig. 3. Packet recovery probabilities as a function of N for K = 20.

that the difference between PM,K and PK for the CFC scheme
is negligible, if any, as seen in both Fig. 3 and Fig. 4 as
well as Table II; this is because the CFC scheme makes no
attempt to prioritise the recovery of the source packets which
are closest to being utilised. On the other hand, the OU scheme
exhibits excellent progressive performance, but as it is simply
transmitting ordered source packets it is susceptible to an
increase in the erasure probability of the channel. Note the
steep increase in ∆N (depicted in Table II) as the erasure
probability is increased.

Another interesting point, shown in both Fig. 3 and Fig. 4,
is the change in the response of PM,K for SWFC when the
scheme defaults to CFC after K transmissions. The ceiling
in the probability of recovery can be attributed to the fact
that the first δ and the last δ source packets have had half
the opportunities of being included in an coded packet, when
compared to the other K −w source packets. As K increases
or p decreases, the ceiling tends to 1.

It is also interesting to note the tradeoff exhibited by SWFC,
for a fixed window size w, between PM,K and PK when
δ is altered. Although, for brevity, these results have been
omitted. If δ < w/2, the progressive recovery of SWFC is
greatly enhanced, as each source packet will be included in a
greater number of coded packets. However, as the encoding
window is sliding much slower that previously, the time taken
for the encoding process to have covered every source packet
is substantially increased. This, of course, detrimentally affects
PK . The exact opposite reasoning holds for δ > w/2.

VI. CONCLUSIONS

In this paper, we addressed the issue of progressive packet
recovery in fountain-coded (FC) data transmission. We pre-

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f 
re

co
v
er

y

N

 

 

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(a) p = 0.05

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f 
re

co
v
er

y

N

 

 

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(b) p = 0.1

Fig. 4. Packet recovery probabilities as a function of N for K = 40.

TABLE II
VALUES OF N̂ AND ∆N FOR DIFFERENT ERASURE PROBABILITIES AND

THE VARIOUS SCHEMES UNDER INVESTIGATION.

OU CFC SFC SW

p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 11 29 25 0 11 14 20 10

0.1 13 38 27 0 13 14 25 6

(a) K = 20

OU CFC SFC SW

p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 22 58 47 0 22 25 36 19

0.1 22 91 50 0 22 28 39 17

(b) K = 40

sented a novel extension of an efficient implementation of
the Gaussian elimination algorithm known as the on-the-fly
decoder. The considered FC schemes were assessed using a
proposed framework and compared against ordered uncoded
transmission. As expected, the FC-based schemes clearly
outperform ordered uncoded transmission in terms of the
probability of recovering the entire source message, regardless
of the length of the message and the erasure probability. On the
other hand, we established that the FC-based strategies require
more transmission attempts than ordered uncoded transmission
to recover a fraction of the source message. We also observed
that the systematic FC scheme remarkably outperforms the
other candidates in terms of progressive message recovery; it
requires the smallest number of transmitted packets to retrieve
at least half of the packets of the source message and pro-
gressively acquire the remaining packets. Nevertheless, if an



increase in overhead can be tolerated, the sliding-window FC
scheme is an attractive alternative for systems using receiving
equipment that can store only a limited number of packets.

ACKNOWLEDGMENT

This work was conducted as part of the R2D2 project,
which is supported by the Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/L006251/1.

REFERENCES

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,” in SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, Oct. 1998, pp. 56–67.

[2] M. Luby, “LT Codes,” in Proc. of the 43rd IEEE Symp. on Found. of
Comput. Sci., Washington, DC, USA, 2002, pp. 271–280.

[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[4] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, “Raptor
codes for reliable download delivery in wireless broadcast systems,” in
3rd IEEE Consumer Commun. Networking Conference, vol. 1, Jan. 2006,
pp. 192–197.

[5] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content
Delivery Protocols, ETSI Techn. Spec., Rev. 1.3.1, Jun. 2009.

[6] M. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, “Sliding-
Window Digital Fountain Codes for Streaming of Multimedia Contents,”
in Circuits and Systems, 2007. ISCAS 2007. IEEE International Sympo-
sium on, May 2007, pp. 3467–3470.

[7] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-
Window Raptor Codes for Efficient Scalable Wireless Video Broadcasting
With Unequal Loss Protection,” IEEE Trans. Image Process., vol. 19,
no. 6, pp. 1491–1503, June 2010.

[8] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the fly Gaussian
elimination for LT codes,” IEEE Commun. Lett., vol. 13, no. 12, pp.
953–955, December 2009.

[9] S. Kim, K. Ko, and S. Chung, “Incremental Gaussian elimination decod-
ing of raptor codes over BEC,” IEEE Commun. Lett., vol. 12, no. 4, pp.
307–309, April 2008.


