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Abstract

Delivery of Point-to-Multipoint (PtM) services over 4G cellular networks is

gaining momentum. This thesis focusses on two different broadcast/multicast

service types: fully reliable and delay sensitive services. The first category

imposes that each PtM communication is delivered in an acknowledged fash-

ion. On the other hand, the delay sensitive category embraces all those

services aiming at broadcasting and multicasting, in an unacknowledged

way, multimedia traffic flows (such as layered video services belonging to

the H.264/SVC family).

For what concerns fully reliable services, this thesis proposes a Modified

HARQ scheme characterized by a minimum energy consumption and re-

duced delivery delivery. Furthermore, in a similar system model, we pro-

pose an optimized error control strategy based on the Network Coding (NC)

principle. Also in that case, the proposed strategy aims at minimizing the

overall transmission energy and significantly reducing the communication

delay.

In addition, we propose multiple NC-based broadcast/multicast communi-

cation strategies suitable for delay sensitive services. We prove that they

can efficiently minimize either the transmission energy or delivery delay. In

particular, this thesis also refers to video service delivery over 3GPP’s LTE

and LTE-A networks as eMBMS flows. We address the problem of optimiz-

ing the radio resource allocation process of eMBMS video streams so that

users, according to their propagation conditions, can receive services at the

maximum achievable service level in a given cell (depending on their propa-

gation conditions). Developed resource allocation models can minimize the

overall radio resource footprint.

This thesis also proposes an efficient power allocation model for delay sen-

sitive services, delivered by the NC approach over OFDMA systems. The

developed allocation model can significantly reduce the overall energy foot-

print of the transmitting node.
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Introduction

According to recent forecasts [1], global IP traffic has increased more than four-fold

in the past five years, and will increase three-fold over the next five. In addition, half

of all IP traffic will be originated by “non-PC” devices. Finally, traffic conveyed over

wireless networks will exceed that delivered through wired systems by 2016.

Among the plethora of services delivered by wireless telecommunication networks,

it is worth mentioning those ones which target multiple users at the same time. Gener-

ally speaking, this thesis deals with services relying on the Point-to-Multipoint (PtM)

communication pattern. In particular, we refer to the fully reliable and delay sensitive

service type. Consider the first one, we defined it refers to services (delivered in a

broadcast or multicast fashion) which have to be successfully received by a predefined

group of users. Hence, if a user recovers the delivered information message, he has to

transmit an acknowledgement message to the transmitting note. It is straightforward

to note that the transmission of that kind of services is feasible only if the number of

receiving users is small. In spite of the aforementioned scalability issues, we would like

to note that fully reliable services are of paramount importance whenever users have to

receive cryptographic session keys, mission critical communication alarms, etc.

For what concerns delay sensitive services, this thesis focusses on video content

delivery. In particular we refer to video services encoded by using the H.264/SVC [2]

codec. An H.264/SVC service consists of multiple video layers, namely, the base layer

and several enhancement layers. The base layer provides basic reconstruction quality

which is gradually improved by decoding subsequent layers [3]. Unlike fully reliable

services, the transmission of a delay sensitive flow should not be acknowledged by

users. As a consequence, one user usually could not have any chance to ask for for the

retransmission of any part of the service stream. Finally, due to the fact that delay

sensitive services are delivered in an unacknowledged fashion, the number of receiving

nodes does not impact on the complexity of the transmission process.

In this thesis, we mainly refer to fourth generation (4G) mobile cellular networks,

namely Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, because

they are able to deliver PtM services by means of a dedicated framework, called evolved
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Introduction

Multimedia Broadcast Multicast Service (eMBMS) [4]. Finally, even though we referred

to specific communication standards, we would like to note that all the proposed re-

source allocation frameworks can be easily implemented in any modern Orthogonal

Frequency-Division Multiple Access (OFDMA) communication system.

This thesis consists of four chapters in which we give: (i) the necessary theoretical

background on the resource allocation issue, (ii) a detailed description of the resource

allocation frameworks suitable for fully reliable and delay sensitive applications, and

(iii) a general energy allocation model for delay sensitive services (delivered over a

OFDMA-based communication system).

Chapter 1 provides a general state of the art about the resource allocation issues

in telecommunication networks. Furthermore, it gives a complete taxonomy of the two

main research branches presented in this thesis, namely the rate and power resource al-

location topics. Finally, the chapter gives a quick overview of the LTE/LTE-A standard

and the eMBMS framework.

Chapter 2 proposes multiple rate allocation strategies suitable for fully reliable ser-

vices. All the developed allocation models address the reliability issue of PtM data

delivery over modern OFDMA-based communication network. In particular, the chap-

ter proposes an efficient Hybrid Automatic Repeat reQuest (HARQ) scheme (suitable

for multicast communications) which has been optimized in order to reduce the mean

packet delivery delay and energy consumption. Moreover, the chapter deals with a the

use of the Network Coding (NC) principle as an error control strategy. In particular,

we propose a modified Random Linear NC (RLNC) communication scheme where the

transmission rate of each packet is properly optimized. The goal of the proposed opti-

mization is to minimize the average number of transmissions and energy consumption

per-transmitted packet.

Chapter 3 focusses on delay sensitive services. In particular, it describes a couple of

broadcast/multicast communication strategies which can improve system performance

both in terms of transmission energy and delivery delay. These goals are achieved in two

ways: (i) by optimally selecting the transmission data rate while the power associated

to transmission of each packet is kept constant, or (ii) by optimizing the transmission

power cost and keeping constant the transmission rate. In addition, we present a novel

radio resource allocation process suitable for delivery H.264 Scalable Video Coding

(H.264/SVC) video services over eMBMS networks by using the RLNC principle. To

this end, we propose a model that can jointly optimize Modulation and Coding Scheme

(MCS), transmission rate and NC scheme used to deliver each H.264/SVC video layer

(to heterogeneous set of user groups). A key aspect of the described system model is

that the allocation scheme we propose does not rely on any user feedback.

xviii
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In Chapter 4, we propose a standard-agnostic energy efficient resource allocation

model suitable for delay sensitive services. Also in this case, data flows are delivered by

means of the RLNC approach. The optimization model we propose aims at minimizing

the overall transmission energy by jointly optimizing the transmission power and RLNC

scheme. We proved that the complexity of the general optimization model can be

efficiently overcome by resorting to an heuristic strategy which provides, in a finite

number of steps, good quality feasible resource allocations.

Finally, Chapter 5 gives the concluding remarks of this thesis.

xix





Chapter 1

State of the Art

This chapter gives a detailed insight into both the rate and power allocation problem.

In particular, the chapter provides useful taxonomies to characterize the proposed al-

location strategies from both the operational research and communication engineering

point of view. Finally, the chapter presents a general description of the telecommuni-

cation network standard which we mainly referred to in numerical results reported in

the thesis.

1.1 Rate Allocation Strategies

In a telecommunication system, the matter of rate allocation represents a critical point

in a network. Rate adaptation strategies have a tremendous impact both on carriers

and end-users. Obviously, the fist one aims at delivering as many services as he can

differentiate his business offer to that of the others. On the other hand, users demand

reliability in communications.

If we look at the reliability of a communications with a wider perspective we cannot

separate that concept to the Quality of Service (QoS) problem. With other words, an

information flow directed to one or more users, not only has to be successfully received

with a certain probability but also it has to be delivered on time (in order to be fully

enjoyable or even, intelligible by the communication ends). That is a common problem

in Voice over IP (VoIP) communications or during the delivery of video contents. In

these cases, the end-user QoS is negatively affected by the communication jitter of by

fluctuations in the communication throughput.

Han et al. [5] classify the rate allocation strategies into three classes:

Source rate adaptation - As for an information source point, it is in charge of handle,

encode and deliver to the other elements of the communication chain, the raw

1



Chapter 1. State of the Art

information stream. In the case of a raw voice communication, the source has to

efficiently select a source coding strategy in order to reduce the communication

footprint, for e.g., by encoding (or even suppressing) the silence periods, etc.

On the other hand, in the case of video content delivery, the source point has

to manage the bursty nature of information flows. In this case, the encoded

video stream has to potentially meet Quality of Experience (QoE) constraints

of a plethora of users who access to the network by using devices characterized

by different capabilities. To this aim, modern communication networks usually

deliver video services in a multi-resolution fashion such that one user can access

to the video service which meets the capabilities of the device in use. That

goal is achieved, for e.g., by transmitting the same content at different quality

levels or by delivering a basic information stream (characterized by a low quality

level) whose perceived quality can eventually be improved by (using one or more)

enhancement streams (which are independently transmitted). In these cases, it is

straightforward to note that, any rate adaptation strategy has to jointly optimize

the source transmission rate of each video stream.

Network and Media Access Control (MAC) layer optimization - The network

later, as well as the MAC layer, acts as a kind of logic interface between the infor-

mation source, which aims at delivering the (encoded) information stream, and

the lower protocol layers, which have to reliably deliver a stream of bits represent-

ing data coming from several application services. All the modern communication

standards usually assume that the network layer, or more likely the MAC layer,

is in charge of scheduling and reliably delivering information streams. For these

reasons, a rate adaption strategy, which takes place in one of these layers, has

to mediate between three factors: (i) the QoE that is experienced by the end-

users, (ii) the actual transmission rate of each communication links, and (iii) the

retransmission delay which is eventually caused by ARQ or HARQ protocols.

Physical layer optimization - That can be considered as the last chance for a com-

munication system to implement a form of rate adaptation. All the modern

wireless communication standards adapt the MCS used to deliver data to one

user. In the case of a Point-to-Point (PtP) communication, each User Equipment

(UE) notify to the base station the MCS which meets its needs. Hence, it appears

as a kind of deterministic optimization strategy where one UE choses, indepen-

dently from the others, the transmission rate of communications directed to itself.

However, it is straightforward to note that things significantly change as soon as

the base station tracts the UE feedbacks as inputs of a rate adaptation strategy

2



1.1 Rate Allocation Strategies

which optimize a global utility function that, for instance, represents the quality

perceived by all the users in the network.

Chapters 2 and 3 propose several rate allocation strategies suitable for fully reliable

and delay sensitive services, respectively. The proposed allocation strategies focus on

the rate optimization issue in broadcast and multicast network scenarios. Moreover,

according to the aforementioned taxonomy, it is worth noting that all the rate allocation

solutions we propose belong to either the MAC or physical layer-related optimization

classes. This choose originates from the following practical observations:

• A fully reliable communication could be used to deliver short mission critical

alarm messages, cryptographic session keys, etc. Hence, they are messages with

a predefined format that a network operator should not alter.

• An hypothetic network operator cannot usually access to the raw multimedia ser-

vice which aims at delivering. Multimedia content providers (such as YouTube,

the BBC’s iPlayer TV, etc.) encode, for instance, all the TV or radio programs

independently to the needs of the actual network conditions experienced in any

network. In addition, even though core infrastructure of 3G and 4G communi-

cation networks can (virtually) re-encode a service before delivering it, all these

operations may not be possible because of their computational load or legal terms

imposed by the content provider itself.

• Assuming that a network operator can re-encode a stream, that operation can im-

prove the QoE of each network user only if it takes into account: the scheduling

strategy implemented at the MAC layer, the actual propagation conditions expe-

rienced by the network clients, the specific ARQ and HARQ schemes in use, etc.

To the best of our knowledge, we are not aware of any resource allocation strategy

such that: (i) impacts on both raw information sources and all the MAC/PHY

layer-related issues, and (ii) is characterized by a reduced computational load.

Due to the fact that this thesis also refers to 3GPP’s LTE and LTE-Advanced net-

work scenarios1, the rest of this chapter reviews the main rate allocation strategies which

meet the tight constraints imposed by LTE standard. Among several survey papers,

Afolabi et al. [6] delivered one of the most detailed review of the main rate allocation-

based resource allocation techniques. In particular, the authors note that modern 3G

and 4G systems can optimize the transmission rate of PtM services according to the

following approaches:

1With the only exception of Section 2.2.4.

3
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Single-Rate (SR) - Each broadcast or multicast service is delivered to all UEs using

the same transmission rate. One example is the Pre-defined Fixed Rate (FR)

strategy [7], where each service is always delivered at the same rate regardless of

propagation conditions experienced or quality level perceived by UEs. However,

Section 1.3.2 shows that the 4G core network can control the transmission rate of

delivered multicast/broadcast services. Hence, in this case the rate can be (virtu-

ally) optimized according to the Least Channel Gain (LCG) strategy [8], i.e., the

rate can be optimized such that a broadcast/multicast flow is transmitted with a

data rate that the UEs in the worst propagation conditions (not necessarily the

cell-edge UEs) can experience the desired QoS level. Finally, the idea underlying

the LCG strategy can be extended as proposed in the Average Group Through-

put (AGT) approach [9] where the transmission rate is optimized such that, on

average, UEs will experience a target quality level.

Multi-Rate (MR) - It is straightforward to note that a SR strategy cannot exploit

the full potential of a 4G communication network. UEs that could benefit from an

higher transmission rate possibly stuck at low QoS levels. The Information De-

composition Techniques (IDT) [10] split each multicast flow into several subflows

so that UEs in the worst channel conditions would be able to decode the lowest

channel rate substreams (i.e., lowest QoS), while UEs in a better channel condi-

tions can decode, beside the basic substream, the higher data rate substreams,

and eventually combine those substreams to yield high QoS results. With other

words, in contrast to the FR allocation techniques, UEs experiencing ideal propa-

gation conditions are no longer penalised, in terms of achieved rates/QoS, by the

UEs in the worst channel conditions. It is worth noting that a pure IDT strategy

mainly deals with the problem of the source coding optimization. That potential

limitation can be overcome by Multicast Subgroup Formation (MSF) strategies

which aim at optimizing the transmission rate of each subflow over a subset of the

communication end points. In this case, we assume that the multimedia content

provided encodes the service in a layered fashion (see Section 3.2.1), independently

form the network provider. A similar multi-rate approach for video delivery over

broadband cellular networks has been investigated in [11, 12].

Chapter 2 proposes both SR and MR strategies which deal with the following issues:

Rate allocation as a reliability control problem - The problem of delivery broad-

cast/multicast services such that all the communication ends (on average) meet

tight QoS constraints can be summarised in this way: Is there a multicast proto-

col suitable for reliable communications where reliability of communications can
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be practically optimized by changing the transmission rate? Chapters 2 and 3

aims at both defining and optimising multiple of reliable communication scheme

for PtM transmissions.

Definition of an LTE/LTE-A-based MR allocation strategy - There are a

plethora of rate allocation strategies that promise to be suitable for PtM service

delivery in 3G/4G contexts. However, in most cases they just refer to a generic

OFDMA-based communication protocol. To this end, in Chapters 2 and 3 we

propose rate allocation strategies fully integrated into the LTE/LTE-A commu-

nication stack. We will show that the aforementioned allocation strategies are

suitable for service multicasting and broadcasting over eMBMS networks.

1.2 Power Allocation Strategies

In a wireless communication network, power allocation issues plays are of paramount

importance. In particular, the matter of power adaptation impacts on several aspects,

such as: the cochannel interference reduction, maximisation of the network capacity,

improvement of the service quality, reduction of a ecological footprint of the telecom-

munication infrastructure, etc.

Unlike rate allocation strategies, a power allocation approach primarily aims at

improving the quality of communications link between transmitter and receiving ends.

Of course, a somewhat optimal power allocation can be constrained to meet certain QoS

requirements (as well as usually happens with a rate adaptation strategy). Moreover,

in this case the focus of the optimization model should be on the quality of the access

links. Hence, the Signal to Interference plus Noise Ratio (SINR) is one of the most

important performance index in an optimization framework.

It is worth noting that, the SINR value can greatly fluctuate because of the combi-

nation of multiple factors, such as: the path loss, shadowing and small-scale fading. A

power allocation scheme should regularise those fluctuations and keep the SINR level

above the minimum protection ratio. The minimum protection ratio is a threshold value

which depends on the target QoS level associated to the delivered service, on the access

priority level of the communication end, etc. Han et al. [5] identify several issues that

a power allocation model may take into account:

• Optimising in uplink vs. downlink - There is a plethora of power allocation

strategy which focus on the uplink phase [13] but they are out of the scope of

this thesis. In fact, this thesis focuses on the power allocation strategies that take

place at the base station side.

5
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• Increasing the SINR of an user vs. minimizing the cochannel interference - if the

SINR of an user increases, it will necessarily increase the interference level which

impacts on all the other network users.

• Centralising vs distributing the allocation strategy - A resource allocation algo-

rithm can be either centralised or distributed. In this thesis we focus on the

centralized approaches (see Chapter 4).

• To pursuit of the optimum solution vs. To settle of a suboptimal one - Usually, a

resource allocation problem is nonlinear and characterized by a nonconvex feasible

set. In addition, the objective function and/or constraints are non-differentiable.

Hence, we have to resort to derivative free optimization strategies. In most cases,

it is hard (or even impossible) to derive the optimum allocation but there are

chances to develop heuristic strategies which can find good suboptimal solutions.

• To consider service related QoS constraints or not - From a theoretical point of

view, a power allocation strategy should primarily aim at keeping the user SINR

above the minimum protection ratio. However, that threshold value can vary

not only on a per-user basis but also on a per-service basis (i.e., the minimum

protection ratio can be a function of the user priority and QoS level associated to

the delivered service). Hence, in most cases the service-related constraints cannot

be considered as minor ornamentals of the optimization problem, as shown in

Chapter 4.

there are several power allocation strategies which can be trivially classified as:

uplink/downlink or centralized/distributed approaches. However, it is worth defining a

couple of different taxonomies [5]:

Acknowledged vs. unacknowledged taxonomy - In this case the focus is on the

protocol used to practically optimize the transmission power.

Closed-loop strategies - As for a downlink allocation strategy, it belongs to the

closed-loop family if the power allocation is periodically updated by the base

station on the basis of feedback provided by UEs. Such kind of allocation

strategies cause a communication overhead that could not be negligible.

Open-loop strategies - These strategies take place when the user feedback can-

not be managed by the base station or when propagation conditions vary too

rapidly to be addressed by a closed-loop strategy. In this case, each client es-

timates the reception quality of the downlink channel and that measurement

entirely characterizes the uplink communication link. The aforementioned
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measurements are transmitted to the base station with a periodicity that is

significantly smaller than that characterising a closed-loop scheme.

Combined Open- and Closed-loop strategies - Such kind of strategies pro-

vide a power allocation by using both an open- and closed-loop strategy.

Usually, an open-loop phase is followed by a closed-loop one.

Performance index driven taxonomy - Objective functions and constraints of a

power allocation model are expressed as a function of a performance index which

can be one of the following ones:

Power-strength - By measuring the base station signal strength at the receiving

end. Even though, that performance index can be measured, modern com-

munication standards usually express quality level measurements in terms of

SINR or information error rate (that can be measured by different levels of

the communication stack).

SINR based - This is the performance index which is commonly used in 3G and

4G communication systems to describe both the quality and capacity of a

communication link.

Error rate based - Each protocol layer can measure its own error probability,

such as: the Bit Error Rate (BER) at the physical layer, the Transport Block

Error Rate (TBLER) at the MAC layer, etc. Hence, the power allocation

model in use can be restated as a function of these high level performance

indexes.

Chapter 4 proposes a power allocation strategy which is suitable for broadcast and

multicast communications. In particular, we propose an open-loop allocation model

(suitable for delay sensitive services) which aims at: (i) minimizing the overall trans-

mission energy of a base station, (ii) providing a feasible power allocation for PtM

service delivering, and (iii) efficiently tacking into account all the QoS constraints.

In spite of the power optimization topic has a very long tradition, a little attention

has been paid on the downlink transmission power reduction for networks delivering

PtM services. To the best of our knowledge there are a couple of allocation strategies

which are suitable for PtM service delivery [14]:

Margin Adaptive (MA) strategy - The model aims at minimizing the total trans-

mission power over a feasible set defined by the desired users’ data rate.

Rate Adaptive (RA) strategy - Unlike the MA approach, the model maximises

the communication throughput and puts constraints on the overall transmission

7
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power.

Unfortunately, due to the fact that we aim at minimizing the overall transmission

energy (under some QoS constraints), the power allocation strategy we propose does

not belong to neither the MA class nor RA one.

In addition, Yuan et al. [15] inspected the problem of deriving the optimal solution

of the power allocation problem and pointed out two important issues:

• Most of the power allocation strategies just focus on heuristic strategies which

comprise of a two-step procedure (such as [16]). Such kind of procedure firstly

aims at matching the users’ rate constraints and then at optimising the transmis-

sion power.

• The user’s rate (r) is expressed in terms of a logarithmic function r(P ) = log(1 +

gP ), where g is the channel gain and P is the transmission power. In addition,

authors of [15] prove that, for g > 0, each MA strategy is NP-hard.

To this end, Chapter 4 overcomes the aforementioned issues by proposing a power

allocation strategy which minimize the overall energy footprint of a system delivering

multiple delay sensitive services. A key aspect of the developed framework is that delay

sensitive services are delivered by means of the NC principle. Finally, we show that the

proposed model can be solved by en efficient one-step heuristic strategy.

1.3 Background of LTE and LTE-A Standards

This thesis mainly refers to the 3GPP’s LTE and LTE-A standards. In particular, we

focus on the eMBMS framework (see Section 1.3.2). To this end, this section provides

a quick insight into the main features of LTE and LTE-A.

In the 1980s, the International Telecommunication Union (ITU) started its work

on the definition and implementation of the third-generation mobile communica-

tion (3G) which after a couple of decades became known as International Mobile

Telecommunications-2000 (IMT-2000). In addition, in the 1990s, several organisa-

tion (such as ETSI, ARIB, etc.) all around the world defined and implemented sev-

eral CDMA-based communication systems, among them there was the Universal Mo-

bile Telecommunications System (UMTS). The independent evolution of Wide CDMA

(WCDMA) systems continued until the end of 1998 when Third Generation Partner-

ship Project (3GPP) was founded. 3GPP aimed at delivering a common standardisa-

tion framework for the future evolutions of the WCDMA standards proposed until that
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point. It is worth noting that at the very beginning, the 3GPP’s work benefited from

the ITU-R’s standardisation activity of 3G systems.

Within ITU-R, the Working Party 5D (WP5D) is in charge of listing a set of satel-

lite and terrestrial radio interfaces (such as DECT, WiMAX, UTRA, E-UTRA) suitable

for both IMT-2000 and IMT-Advance. In addition, the WP5D provides a set of rec-

ommendations that should reflect the current and future directions of all the overall

standardisation body. In any case, the WP5D does not provide any technical require-

ment or specification. In addition, WP5D is providing a set of recommendations also

for those standards which are beyond IMT-2000, namely the communication systems

belonging to the IMT-Advanced (which is the gateway to the 4G communication era).

The LTE (until 3GPP’s Release 9) belongs to the IMT-2000 set. On the other hand,

from 3GPP’s Release 10, LTE, called LTE-A, takes part in the IMT-advanced body.

It is worth noting that LTE, as well as LTE-A, are standards for the Radio Access

Network (RAN). In particular, from an architectural point of view, a LTE-based net-

work (including the core network) has a “flat radio-access” [4]. The radio access part

of the system consists of just one entity, which is the eNodeB (eNB). However, unlike

WiMAX, 3GPP started the standardisation process of the core network (namely, the

Evolved Packet Core, EPC). ECP and RAN form the Evolved Packet System (EPS).

From a low level perspective, LTE-based systems rely on the well-known OFDM

modulation format for both the downlink and uplink phase. Hence, all the available

radio resources can be modelled, from a logic point of view, as a frequency/time matrix

whose elements hold a variable amount of downlink/uplink data.

Namely, each UE measures and reports to the eNB the quality of the downlink

channel by checking a set of reference signals placed along the communication frame.

Hence, each eNB periodically collects Channel Quality Indicators (CQIs) from all the

served UEs.

LTE can be operated both in Time Division Duplexing (TDD) as Frequency Divi-

sion Duplexing (FDD). In addition, it can be used to deploy a multi-cellular network

characterized by a frequency reuse factor equal to one. That means that the same

frequency/time resource can be virtually used for uplink or downlink communications

in two (or more) neighbouring cells.

LTE-based systems can manage multi-antenna transmission/reception schemes. In

particular, both eNBs and UEs have to be equipped with at least two difference receiving

antennas. Hence, they can exploit the channel diversity and adopt any beam-forming

based communication strategy.
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Figure 1.1: Evolved Packet System.

1.3.1 EPS and eMBMS Data Delivery

The EPS comprises the entities below (sketched in Figure 1.1):

eNodeB - The RAN consists of just is entity. It is worth noting that it is a logical

block. Hence, it can be modelled as a classic Base Station (BS) or as a central

entity managing several (independent) radio heads.

MME - The Mobility Management Entity manages all the communication flows be-

tween UEs and the EPC. Hence, it manages users’ bearers and plays a key role

in the LTE security framework [4].

S-GW - The Serving Gateway acts as a gateway between the RAN and the EPC. In

addition, it tracks the position of UEs and collects the billing-related information.

P-GW - The Packet Data Network Gateway is the Internet gateway of the EPC. It

gives an IP address to each UE.

For the sake of clarity, the EPC also comprises other entities. All those entities have

not been reported because are related to aspects that are out of the scope of this thesis.

1.3.2 eMBMS in LTE and LTE-A

Starting form 3GPP’s Release 6, the MBMS framework has been proposed to efficiently

deliver multimedia services in a broadcast and multicast fashion [4]. 3GPP’s Release 9

and 10 afterwards foresee an enhanced version of the MBMS framework (namely, the

eMBMS) which specifies two designs:

10
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• The Single Cell-eMBMS (SC-eMBMS) - Each eNB of the network delivers multi-

cast (or broadcast) services independently from the others. The SC design allows

each eNB to independently select a suitable MCS that ensures reliable transmis-

sion to all users in the cell.

• The Multicast-Broadcast Single Frequency Network (MBSFN) eMBMS - Two or

more eNBs are grouped into MBSFNs. All the eNBs of the same MBSFN are

synchronised and transmit data with the same physical signals. The MBSFN-

eMBMS mode improves the reliability of data delivery using coordinated trans-

missions from multiple cells. This mode is very beneficial for users positioned

close to the cell-edge. Usually, MCSs of delivered services are chosen by the core

network and are same for all eNBs [17, 4]. For the sake of clarity, each eNB pro-

vides a same resource allocation and broadcasts exactly the same content (at the

same time). eMBMS transmissions received by a UE in a MBSFN area appear

as it were transmitted by one eNB. Hence, the UE collects multiple copies of

a same transmission, affected by different communication delays1. Inter-Symbol

Interference (ISI) effects are mitigated by OFDM cyclic prefixes which are longer

than those used in non-eMBMS communications. For these reasons, the UE can

manage all the copies of the same OFDM symbol as the where the result of a

multipath communication.

Let us consider a group of eMBMS-capable eNBs. They define a “MBMS Service

Area”. A MBMS Service Area consists of one or more “MBSFN Synchronisation Areas”.

A Synchronisation Areas is composed by a set of eNBs which are mutually synchronised.

Hence, a MBMS Synchronisation Area can hold one or more “MBSFN Areas”. Each

MBSFN Area consists of one or more eNBs transmitting the same set of MBMS flows.

It is worth noting that, an eNB can take part in multiple MBSFN Areas (but not at

the same time).

The EPS can manage a broadcast or multicast service by the following entities

(sketched in Figure 1.2):

BMSC - The Broadcast-Multicast Service Centre manages communication flows com-

ing from/to a content provider that is external to the EPC.

MBMS-GW - The MBMS Gateway forwards real time services, coming from the

BMSC, to the eNBs.

1The communication delay of each replica is both caused by the propagation delay and by the
“physiological” drifts of eNB clocks.
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Figure 1.2: Evolved Packet System which includes the main eMBMS entities.

MCE - The Multicell Coordination Entity provides the radio resource allocation of

each MBMS flow that is transmitted over any cell (in the case of SC-eMBMS) or

MBSFN area (for MBSFN-eMBMS flows).

For what concerns physical aspect of eMBMS communications, it is worth noting

that MBMS flows cannot be mixed to the uplink/downlink ones because eMBMS com-

munications needs [4]: (i) a longer ciclic prefix, and (ii) a more dense reference signal

pattern. Hence, only a specific group of subframes can be used to deliver eMBMS

services.

1.3.3 RAN Protocol Stack and Radio Resource Modelling

The radio protocol stack of eNBs and UEs can be summarised as reported in Figure 1.3.

In particular, it is composed by the following layers:

PDCP - The Packet Data Converge Protocol processes IP packets (namely, the PDCP

Service Data Unit, PDCP SDU) by compressing their headers and cyphering their

payloads. It also is in charge of duplicate-removal and in-order delivery processes

on an end-to-end basis. A PDCP SDU is mapped on one PDCP Packet Data

Unit (PDCP PDU).

RLC - The Radio Link Control segments and/or concatenates multiple RLC-SDUs

(possibly belonging to different radio bearers). It implements ARQ strategies for

PtP communications on an end-to-end basis.

MAC - RLC-PDUs are mapped on a set logical channels provided by the MAC layer.

In addition, the MAC layer manages multiple data scheduling operations aiming
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Figure 1.3: LTE communication stack.

at mapping all the logical channels on transport channels provided by the PHY

layer.

PHY - The Physical layer segments/concatenates one or more MAC-SDUs in a Trans-

port Block (TB). Each TB is mapped on physical radio resources as (indirectly)

stated by the MAC scheduler.

Radio resources can be modelled as a matrix composed by Physical Resource Blocks

(PRBs)1. A PRB is a fixed-size frequency/time structure composed by 12 contiguous

subcarriers × 6 (or 7) OFDM symbols. In addition, regardless of the considered du-

plexing scheme, transmissions are organized in frames. A frame consists of subframes

(1 ms long). The transmission time duration of a frame is 10 ms. Finally, in the case of

TDD, each subframe can be assigned to the uplink, downlink phases or, it can be used

to convey signalling information [4].

1For the sake of clarity, we will equivalently refer to PRBs also in terms of Resource Blocks.
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Chapter 2

Acknowledged Rate Allocation

Strategies

This chapter deals with several rate allocation strategy which address the issue of fully

reliable service delivery. In particular, this chapter is organized as follows. Section 2.1

proposes a efficient HARQ scheme for multicast communications. In particular, we pro-

pose a Modified HARQ scheme based on the Symbol Combining principle (MHARQ-

SC) where multiple copies of the same packet are consecutively transmitted. The pro-

posed solution has been optimized by considering as performance metrics: the mean

packet delivery delay and energy consumption (per-information packet). For the sake

of comparisons, we inspected the performance of different HARQ schemes optimized

for multicast communications.

In addition, the chapter deals with a particular application of the NC principle:

the NC as error control strategy. Section 2.2 investigates the performance achieved

by combining the Symbol Combining (SC) approach with the RLNC principle in PtM

communications. In this case the transmission rate of each packet is properly optimized

in order to meet different objectives. In addition to the optimal resource allocation

model, we propose an efficient heuristic approach which is characterized by a reduced

computational load. The performance of the proposed solutions has been validated

in a broadcast network model and in classical butterfly topology network1. Analytical

results clearly show that the proposed solutions outperform the basic RLNC alternative.

In Sections 2.2.4 and 2.2.5, the performance of the aforementioned allocation model

is validated in a satellite communication system and SC-eMBMS network deployment.

1See Section 2.2 for a detailed definition of both the network topologies.
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2.1 Efficient HARQ Scheme for Multicast Commu-

nications

Multicast communications are gaining momentum in wireless communications since

they make possible delivering services to multiple users located within the coverage

area of the same access node. Unlike unicast communications, multicast flows deliver

the same message to several users at the same time. Multicast services include video

applications, group text messaging and specific alerting messaging services (used to

manage, for e.g., emergency situations, etc.). On the other hand, it is straightforward

to note that the communication delay and transmission energy associated to reliable

multicast communications decrease as the number of users increases [18, 19]. In partic-

ular, the mean time required to deliver an information packet to all the members of a

Multicast Group (MG) increases with the MG size. Hence, the overall energy associated

to the transmission of an information packet increases as well.

It is worth noting that the bottleneck of the overall system performance usually is

the node experiencing the worst propagation conditions. HARQ schemes have been

initially used to increase the reliability of unicast communications [20, 21]. In particu-

lar, Lin et al. [20] proposed a HARQ technique which aim at iteratively broadcasting

fixed-length packets composed by a couple of subpackets (characterized by the same

dimensions). In this way, each subpacket can be used to deliver new information ele-

ments or to increase the amount of redundancy information related to the packet which

has not been successfully received. In addition, Kim et al. [22] proposed a HARQ error

control strategy for multicast communication based on the classic SC approach, origi-

nally proposed by Chase [23]. The proposed approach allows a receiving end to recover

one information packet by soft-combining (according to the maximum ratio combining)

a fixed number of copies (of the information packet itself), even those containing errors.

Differently from [22], this section deals with a Modified HARQ-SC scheme, hereafter

named MHARQ-SC, relying on the continuous transmission of a given number of copies

(denoted as m) of the same packet, during each transmission opportunity. Afterwards,

each receiving node combines all the received copies of the same packet as stated by the

SC principle. It is worth noting that the implementation complexity of the proposed

MHARQ-SC is equivalent to that associated to the classical HARQ-SC scheme.

In order to derive the performance bounds for the MHARQ-SC, the rest of the sec-

tion relies on a theoretical framework based on the Absorbing Markov Chains (AMC)

theory [24]. The reported analysis considers both the AWGN and (frequency-non-

selective) slow Rayleigh faded propagation conditions. Moreover, we present an opti-

mization framework for the proposed MHARQ-SC scheme. The accuracy of the pro-
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AP

W1 W2 W3 WM

Figure 2.1: Multicast (broadcast) network model.

posed theoretical derivation will be validated by resorting to computer simulations.

Finally, numerical results show that the optimized MHARQ-SC scheme outperforms

the rate optimized HARQ-SC alternative proposed in [22].

2.1.1 MHARQ-SC Approach

As previously mentioned, the MHARQ-SC scheme relies on the SC principle to increase

the delivery performance, in particular under poor propagation conditions. We prove

that the transmission of an optimized number (m) of copies of the same packet leads

the MHARQ-SC scheme to outperform the HARQ-SC alternative.

The system under investigation is sketched in Figure 2.1. In this case, a single source

node, namely the Access Point (AP), transmits the same communication flow to the

set W = {W1,W2, . . . ,WM} of M nodes forming the MG. Each communication link is

modelled as an independent lossy channel. We can imagine that one of the simplest

retransmission scheme consists in retransmitting a new set of m copies of the same

packet till all the nodes of the MG receive it1 [25]. However, this solution is clearly

not efficient, as a consequence, we refer to a scheme where each client acknowledges the

reception of a information packet and the AP counts the number of clients which have

successfully provided acknowledgements. The AP transmits the same set of m copies

until all the clients successfully recover the information packet. In particular, one node

of the MG recovers the information packet by using the procedure below:

1. m copies of the same packet are combined symbol-by-symbol according to the SC

principle;

2. an SC detection is performed symbol-by-symbol as outlined in the Appendix A;

3. if the client recovers the information packet, it sends a positive acknowledgement

message (ACK).

1Without any loss of generality we assumed that the acknowledgement messages are transmitted
on a fully reliable channel.
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Figure 2.2: MHARQ-SC scheme from the point of view of the AP.

The algorithmic description of the MHARQ-SC scheme, from the point of view of the

AP, is sketched in Figure 2.2. It is worth noting that, for m = 1, Figure 2.2 also defines

an HARQ scheme (based on the SC principle) which we call classical HARQ-SC scheme.

We remark that in the case of the MHARQ-SC approach, the receiving node performs

the SC detection on the set of m copies of the same information packet. If the detection

process fails, a new process start as soon as a new burst of m copies is received.

The performance of the MHARQ-SC scheme mainly dependents on m. Hence, we

propose an analytical approach to derive optimum m values. In particular, we mainly

focus on the minimization of the mean multicast delivery delay defined as: the time

interval (normalized to the transmission time duration τ of one copy) which starts on

the first transmission attempt of an information packet and finishes as soon the MG

successfully receives it.

We assume that each information flow uses the Binary Phase Shift Keying (BPSK)

modulation1. Finally, we assume that propagation conditions are statically independent

during the transmission of each information packet copy.

2.1.1.1 Performance Evaluation

The performance behaviour of the MHARQ-SC scheme can be efficiently inspected

by the AMC theory [24] (Chapter 3, page 43). For more information about the AMC,

please refer to Appendix B which reports an instant prime on the theoretical framework

1Note that the derived results are quite general and they can be easily extended to different
modulation schemes.
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used in the rest of this section.

Let us consider the process modelling the successful reception of an information

packet by the MG. Considering a scenario where all the communication channels have

the same propagation conditions. Let si (for i = 0, . . . ,M) be the state of the process,

defined as the number of nodes of the MG that have successful received the information

packet. Hence, if the number of nodes which have successfully recovered the information

packet passes from i to j (for j ≥ i) then the process moves from the state si to sj. For

these reasons, sM is the absorbing state of the process1 (see Appendix B).

It is straightforward to note that the considered process always begins from the state

s0 and finishes as soon as it enters into the absorbing state sM . According to the con-

sidered AMC framework, all the states {s0, . . . , sM−1} are transient (see Appendix B),

which means that once the process leaves one of them, the process can no longer reenter

it.

Let pi,j be the probability that a transition occurs from the state si to sj (for j ≥ i)

pi,j =

(
M − i
M − j

)
PB(m)M−j

[
1− PB(m)

]j−i
(2.1)

where PB(m) is the packet error probability associated to a generic receiving end. In

the Appendix A we will prove that PB(m) depends on m. Let P be the state transition

probabilities matrix where the (i, j)-th entry, pi,j, is given by (2.1). In particular, P

can be reported as follows

P
.
=



PB(m)M
(

M

M − 1

)
PB(m)M−1

[
1− PB(m)

]
· · ·

[
1− PB(m)

]M
0 PB(m)M−1 · · ·

[
1− PB(m)

]M−1

...
...

...
...

0 0 · · · 1− PB(m)

0 0 · · · 1


(2.2)

Moreover, we have that the transition matrix P can be expressed in the canonical form

as follows [24]:

P =

[
Q R

0 1

]
(2.3)

where

1. Q is the M ×M transition matrix modelling the process as long as it involves

1If the process enters the absorbing state, it means that all the nodes of the MG have successfully
recovered the information packet. So that, once the process reaches the absorbing state, it cannot be
left.
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only transient states

Q
.
=



PB(m)M · · ·
(
M

1

)
PB(m)

[
1− PB(m)

]M−1

0 · · ·
(
M − 1

1

)
PB(m)

[
1− PB(m)

]M−2

...
...

...

0 · · · PB(m)


(2.4)

2. R is a M -dimensional column vector listing the transition probabilities of the

process when it starts from a transient state and enters in the absorbing one

R
.
=



[
1− PB(m)

]M
[
1− PB(m)

]M−1

...

1− PB(m)


(2.5)

3. 0 is a M -dimensional row vector with entries all equal to zero.

The aforementioned analysis can be generalised to the case of unequal propagation

conditions, i.e., it can be extended to the case where each communication channel is

affected by differed propagation conditions. In this case, the i-th state of the packet

reception process can be defined as a M -ary column vector si (with i = 0, . . . , 2M − 1),

where the t-th entry si[t] (for i = 0, . . . , 2M−1 and t = 1, . . . ,M) is equal to 1 if the node

Wt has correctly received the information packet or 0, otherwise. As a consequence, the

absorbing state is represented by the vector s2M−1 which has all the components equal

to one. Also in this case, the packet transmission process starts from the state s0 (whose

entries are equal to 0) and finishes as soon as it enters into the absorbing state s2M−1.

Finally, it is straightforward to note that all the states si (with i = 0, . . . , 2M − 2) are

transient.

Let us define the operator �: the relation sj � si holds if sj[t] ≥ si[t] (∀t =

1, . . . ,M). Let PB,i(m) (for i = 1, . . . ,M) be the packet error probability associated to

the i-th node. Hence, for si = sj = s2M−1, the (i, j)-th entry of the transition matrix P

is equal to one. On the other hand, if sj � si, the state transition probability pi,j can

be defined as:

pi,j =
∏

t=1,...,M t.c.

si[t]=sj [t]=0

PB,t(m)
∏

t=1,...,M t.c.

sj [t]>si[t]

[
1− PB,t(m)

]
(2.6)

In the Appendix A we derive PB,i(m) in the case of AWGN and frequency-non selective

slow Rayleigh faded propagation conditions. As an example, the state diagram of an
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s0 s1 s2 s3

PB,1(m)
[
1− PB,2(m)

]

[
1− PB,1(m)

]
PB,2(m)

[
1− PB,1(m)

][
1− PB,2(m)

]

1− PB,1(m)

1− PB,2(m)

PB,1(m)PB,2(m) PB,1(m)

PB,2(m) 1

Figure 2.3: AMC associated to the packet transmission process for a multicast network
with two receiving nodes.

AMC modelling the packet reception is shown in Figure 2.3.

Considering (2.6), the transition probability matrix P is in the canonical form (2.3).

However, in this case we have:

1. Q is a (2M − 1)× (2M − 1) defined as

Q =


p0,0 p0,1 · · · p0,2M−1

p1,0 p1,1 · · · p1,2M−1
...

...
...

...

p2M−1,0 p2M−1,1 · · · p2M−1,2M−1

 (2.7)

2. R is a (2M − 1)-dimensional column vector defines as

R =


p0,2M

p1,2M

...

p2M−1,2M

 (2.8)

3. 0 is a 2M − 1 dimensional row vector with all entries equal to zero.

In oder to derive a closed form solution for the the mean multicast delivery delay, it is

useful to define the fundamental matrix of the AMC (see Appendix B) as N = (I−Q)−1,

where I is the identity matrix having M×M dimensions in the case of equal propagation

conditions or (2M − 1) × (2M − 1) components in the case of unequal propagation
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conditions. Moreover, we will prove in in Section B.2 that the following relation holds:

N = (I−Q)−1 =
∞∑
k=0

Qk (2.9)

where the (i, j)-th component of the matrix Qk is the probability that the process

reaches the j-th transient state from the j-th one in k steps (i.e., after that the AP has

transmitted k burst of m copies of the same information packet). In Section B.2 we

will prove that the (i, j)-th element of the fundamental matrix N is the mean value of

the total number of times that the process, started from the i-th state, the j-th one1.

Hence on average, the AP has to transmits m copies of the same information packet a

number of times which is

ζ(m) =
∑
l

N[1, l] (2.10)

where the term N[1, l] is the (1, l)-th element of the N matrix. Hence, the term ζ(m)

is equal to the sum of all the elements forming the first row of the matrix N.

2.1.1.2 Optimization Procedure

From (2.10), we have that the mean multicast delivery delay δ(m) of an information

packet (normalized with respect to τ) is

δ(m) = (m+ s) ζ(m) (2.11)

where s denotes the round-trip delay normalized with respect to τ (i.e., the time interval

required to possibly receive and acknowledge m copies of a packets). Let L and Eb be

the packet length (expressed in bits) and energy per bit, respectively. The mean value

(normalized with respect to LEb) of the mean energy, ε(m), required to successful

deliver an information packet, can be expresses as follows:

ε(m) = mζ(m). (2.12)

From (2.11) and (2.12), we note that the mean energy is minimized once ε(m) is min-

imized with respect to m. Hence, for the sake of simplicity, we focus our analysis on

the minimization of δ(m) with respect to m. As a consequence, we define the optimal

1Note that both the i-th and j-th states are transient.
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values of m as the solution of the following optimization problem:

(P1) minimize δ(m) (2.13)

subject to m̂ ∈ N. (2.14)

Unfortunately, P1 is an integer nonlinear optimization problem. Hence, it cannot be

efficiently solved in real time. Hence, we resorted to the Mesh Adaptive Direct Search

(MADS) algorithm [26]. In particular, in this case, we considered the MADS imple-

mentation provided by the NOMAD solver [27].

2.1.2 Analytical Results

This section presents numerical results concerning the performance analysis of the pro-

posed MHARQ-SC scheme. In addition, the proposed MHARQ-SC strategy is com-

pared with different HARQ alternatives. In particular, we considered the classical

HARQ-SC scheme (Section 2.1.1) and the optimized HARQ approach proposed by

Kim et al. [22]. In addition, the analytical predictions, of the proposed strategy also is

validated by computer simulations. We considered two network scenarios:

• scenario 1 - All the communication links have the same propagation conditions.

This means that the SNR γi and the mean SNR γ̄i of each receiving node (for

i = 1, . . . ,M) is equal to γ and γ̄, respectively. Both γ and γ̄ can take a value in

the interval [3, 13] dB;

• scenario 2 - Different propagation conditions with parameters γi and γ̄i defined

(for i = 1, . . . ,M) as

γi = γ1 −
(
i− 1

)
η, i = 1, . . . ,M , (2.15)

γ̄i = γ̄1 −
(
i− 1

)
η̄, i = 1, . . . ,M (2.16)

where the values of η and η̄ have been set equal to 0.45 dB. Hence, in this scenario

the node W1 is characterized by the best propagation conditions, while node WM

experiences the worst ones.

Moreover, we have assumed for both the considered scenarios:

• a multicast set composed by M = 30 nodes;

• the length L of each information packet equal to 512 and 1024 bits;

• the normalized round-trip time, s equal to 5 or 10.
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Figure 2.4: Optimal values of m vs. γ in the case of AWGN propagation conditions
(scenario 1).

3 4 5 6 7 8 9 10 11 12 131

2

3

4

Minimum SNR value (dB)

O
pt

im
al

 m
 v

al
ue

s

 

 

MHARQ−SC Simulation (L = 1024 bits)
MHARQ−SC Theory (L = 1024 bits)
MHARQ−SC Simulation (L = 512 bits)
MHARQ−SC Theory (L = 512 bits)

Figure 2.5: Optimal values of m vs. the minimum values of γi in the case of AWGN
propagation conditions (scenario 2).

We start our analysis by providing numerical results concerning the optimization

procedure of the proposed MHARQ-SC scheme (outlined in Section 2.1.1). The ob-

tained results are shown in Figure 2.4 and 2.5 as a function of γ and γ̄, respectively,

under the assumption of AWGN propagation conditions. These figures report the op-

timal values of m derived by solving the problem P1. The aforementioned values have

been compared to those obtained by numerical results. It is straightforward to note

that the analytical predications match the simulation results1.

Figures 2.6 and 2.7 show the performance in terms of the mean multicast delivery

delay in the case of the optimized MHARQ-SC scheme (normalized with respect to

1For what concerns the latter aspect, the value of m has been optimized by simulating the trans-
mission of the same information packet and testing different values of m ∈ [1, 30]. The value of m
which minimizes (2.13) has been considered as the optimum one.
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Figure 2.6: Normalized mean multicast delivery delay as a function of γ in the case of
AWGN propagation conditions (scenario 1).
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Figure 2.7: Normalized mean multicast delivery delay as a function of the minimum
value of γi in the case of AWGN propagation conditions (scenario 2).

τ). The figures also compare the MHARQ-SC with the classical HARQ-SC scheme

by assuming L = 1024 bits and M = 64 nodes. These figures clearly show that the

proposed MHARQ-SC outperforms the classic HARQ-SC.

Let us consider frequency-non selective slow Rayleigh faded propagation conditions.

According to this, Figures 2.4-2.5 and Figures 2.8-2.9 show the optimal values of m.

The figures also compare both analytical and simulation results. Also in this case we

can note that the analytical predictions match the simulation results.

Figures 2.10-2.11 show the (normalized) mean multicast delivery delay of the opti-

mized MHARQ-SC scheme and classical HARQ-SC (for L = 1024 and M=64). These

figures clearly show that the optimized MHARQ-SC scheme outperform the other al-

ternative.
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Figure 2.8: Optimal m values as a function of γ̄ in the case of faded propagation
conditions (scenario 1).
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Figure 2.9: Optimal m values as a function of the minimum value of γ̄i in the case of
faded propagation conditions (scenario 2).

In addition, Figure 2.12 compares the performance of the optimized MHARQ-SC

scheme with that achieved by the rate optimized HARQ-SC scheme proposed by Kim

et al. [22] (indicated in the figure as Opt. HARQ-SC). The figure considers the scenario

1 with γ̄i = 3 dB (for i = 1, . . . ,M) and (frequency-non selective slow Rayleigh) faded

propagation conditions. Also in this case the proposed MHARQ-SC clearly outperforms

the other alternatives.

Briefly, in this section we investigated the performance of the proposed MHARQ-

SC scheme in a multicast wireless communication system. The performance of the

proposed solution has been validated under AWGN and frequency-non-selective slow

Rayleigh faded propagation conditions. The MHARQ-SC approach has been compared

to multiple alternatives, such as: the classical HARQ-SC and optimized HARQ-SC
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Figure 2.10: Normalized mean multicast delivery delay for information packet as a
function of γ̄ for faded propagation conditions (scenario 1).
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Figure 2.11: Normalized mean multicast delivery delay for information packet as a
function of the minimum γ̄i for faded propagation conditions (scenario 2).

schemes. The effectiveness of the proposed optimization and analytical model has been

clearly shown.

2.2 NC Error Control Strategies with Symbol Com-

bining

NC principle [28] is receiving a great attention as an effective way of improving the ca-

pacity of both wired and wireless networks, also including sensor [29] and vehicular [30]

networks. In particular, Wang [31] proved that the NC achieves the min-cut flow in

broadcast scenarios, and hence, makes possible improving the network capacity [32].

This section deals with the RLNC [33] approach which represents the simplest and the
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Figure 2.12: Normalized mean multicast delivery delay as a function of M for γ̄i = 3 dB.

most efficient way to implement the NC communication principle in a communication

network.

As for a wireless communication network, one of the most important issue is how to

counteract packet erasures. Several approaches have been proposed in the literature,

including the integration of the NC with ARQ [33] or even HARQ schemes [34, 35, 36].

Among novel proposals, Chiti et al. [37] outline a power adaptation which aims at

increasing the communication reliability. In particular, this approach can be considered

as an ideal realisation of the well known Chase combining principle [38] widely adopted

in the case of ARQ systems. Unlike the other proposals, this section deals with the

performance evaluation and optimization of a novel RLNC scheme which is suitable

for burst communications over lossy links. In the rest of the section, we will refer to

the proposed approach as Symbol Duration Increased NC (SDI-NC). In brief, the SDI-

NC scheme leads one transmitting end to deliver packets where the symbol duration

is increased of a fixed (and integer) factor as stated by the SC principle [38]. In the

rest of the section, we will show how to optimize and implement the proposed SDI-NC

scheme in a broadcast and butterfly network model [33].

The remaining part of the section is organized as follows. Section 2.2.1 provides a

quick overview about the RLNC and related works. Section 2.2.2 describes the SDI-NC

principle on a link-to-link basis by considering an AWGN and a slow fading regime;

two optimization methods are proposed in this Section. Section 2.2.2.1 generalises the

proposed scheme to the case of a butterfly network model. At the end, Section 2.2.3

presents an extensive performance comparison among the classic RLNC and the pro-

posed SDI-NC schemes.
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2.2.1 Background and Related Works

2.2.1.1 RLNC Communication Strategy

Let E = {e1, e2, . . . , eK} be a message composed of K packets (in the rest of the section

we will refer to it as “generation length”), each formed by J elements (belonging to a

finite field and L/J bits long), where L is the packet length (in bits). Note that E can

be alternatively modelled as a J ×K matrix (ME) where the i-th column is defined

by the i-th information packet, (for i = 1, . . . , K). In this section we will refer to the

RLNC, where coded packets are generated by a linear combination of the original ones.

The j-th coded packet êj can be computed as follows:

êj = ME · cj, (2.17)

where cj = [c1,j, c2,j. . . . , cK,j]
T is an N -dimensional column vector (called “coding vec-

tor”) whose elements are randomly chosen. Finally, cj and ej (for j = 1, 2, . . . , K)

belongs to a large enough finite field Gq of size q [39]. According to this, a transmit-

ting node can compute N = K +G coded packets where G represents the introduced

redundancy. The term G is directly related to three parameters [40, 41]: q, K and the

packet delivery probability. From the main theorem of NC [39] and the basic properties

of the RLNC [42], we have that a receiving node needs to collect at least K linearly

independent coded packets to successfully recover the message E.

Since coding vectors are randomly chosen, the probability that two coded packets

are linearly dependent is nonzero. Hence, N coded packets are sent out in order to make

possible recovering a generation [43]. In order to recover the transmitted message, each

receiver has to collect the coding vector associated to each given coded packet (which

are delivered together). Hence, each coded packet has to deliver an extra amount of

bits which is equal to of smaller than K log2(q) bits [44]. However, due to the fact

that coding vectors are quite sparse, several approaches have been proposed [44, 45]

to reduce such kind of overhead. However, this particular aspect is out of the scope

of this section. Hence, we assumed that the coding vectors are known at the receiving

ends. At the receiver side each linearly independent coded packet and its corresponding

coding vector, defines a column of the matrices MÊ and C (of dimensions J ×K and

K ×K), respectively [39]. When the number of linearly independent coded packets is

(at least) equal to K, the original message can be computed as follows:

ME = MÊ ·C
−1. (2.18)
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2.2.1.2 Related Works

The multimedia broadcasting (or multicasting) over 4G networks will be in the near

future a key commercial service [46]. Usually, users belonging to the same broadcast

group are spread over wide areas and suffer of different propagation conditions. Efficient

strategies, which aim at preserving data integrity without loosing so much communica-

tion throughput, are more than welcome.

To this end, Kim et al. [22] propose an optimized version of a well known HARQ

strategy which relies on the SC principle. However, in that case the strategy has to

face with a severe limitation: each packet has to be acknowledged to the transmitting

node. The aforementioned drawback can be overcome by resorting to the RLNC as

proposed by Eryilmaz et al. [47]. In particular, authors of [47] describe a strategy

to counteract channel erasures in PtM communication by resorting to an optimized

scheduling scheme. In addition, authors derive theoretical bounds for communications

that occur over an ON/OFF channel.

After that, the theoretical derivation of Ghaderi et al. [32] remarks that the RLNC

can be efficiently used as an error control strategy in a broadcast and multicast context.

Finally, [48] and [49] propose an optimized NC scheme which aims at minimizing the

packet losses. Unfortunately, the aforementioned NC-based communication schemes

takes place only in these cases where packets are received with errors and have to be

re-transmitted. Hence, that reasoning cannot fully exploit the main features of the NC

benefits highlighted in [32].

2.2.2 Symbol Combining NC Principle

This section investigates the performance gain of the proposed integration of the SC

principle to RLNC. The original formulation of the SC principle foresees a bit-by-bit

combination of all the received copies of the same data packet (also including those

received with errors). In particular, it aims at implementing a soft-detection at each

receiving ends [21]. It is straightforward to note that if RLNC scheme is used as an

error control strategy, each coded packet is potentially different to the others. Hence,

the basic SC approach [38] cannot be directly applied. That drawback can be overcome

by resorting to the alternative formulation of the SC principle proposed in [21]. In this

case we propose to transmit each coded packet such that the duration of each symbol

is increased by a factor m (i.e., the SDI factor). It is worth noting that the proposed

approach is characterized by a an implementation complexity which is not greater than

that characterises the basic SC approach [38].

In the rest of this section we compare the proposed SDI-NC approach with the classic
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RLNC. However, the performance of the SDI-NC scheme depends on the parameter m,

hence in the rest of the section, we propose an efficient optimization procedure for it. In

particular, the performance analysis focuses on an objective function which expresses

both the mean delivery delay (i.e., the mean time needed to recover N coded packets

by all the receiving ends), and mean energy consumption.

Let us start our analysis by focusing on the broadcast network model, shown in

Figure 2.1, where a source (the AP) broadcasts packets to a set of {Wi} nodes (where

i = 1, . . . ,M) over M lossy independent channels. Whenever Wi successfully collects

N coded packets (i.e., whenever it collects K linearly independent coded packets), it

transmits to the AP an ACK1. The AP starts the transmission of a new generation

whenever it collects an ACK message from all the network nodes. Moreover, we assume

that the burst of N coded packets is sent through an AWGN channel by means of a

Quadrature Phase-Shift Keying (QPSK) modulation2 [50].

Let L be the size of a coded packet (expressed in bits), under the assumption of

an ideal error detecting code. The Packet Error Probability (PEP) characterizing the

reception of Wi can be defined as follows:

PB,i(m) = 1−
[
1− Pe,i(m)

]L
, (2.19)

where Pe,i(m) represents the bit error probability which affects the reception of Wi. In

particular, Pe,i(m) can be expressed as follows [50]:

Pe,i(m) = Q
(√

mγi

)
i=1, . . . ,M, (2.20)

where

• γi is the ratio between the energy associated to each transmitted symbol and the

one side AWGN spectral density (at the i-th receiver side); here after named as

SNR for the i-th link;

• Q(x) is the well known Q function.

It is worth noting that, (2.20) has been derived by assuming that the effects of the

channel interferences are negligible. Finally, if the overall contribution of the channel

interferences can be modelled like an independent Gaussian noise, (2.20) holds3.

1Also in this case, without loss of generality we assumed that the transmission of ACKs occurs
instantaneously and through a fully reliable communication channel.

2Note that the derived results are quite general and they can be easily extended to different
modulation schemes and communication channel models.

3For the sake of clarity, in that case γi represents the SINR of the i-th receiving end.
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Let us consider the random variable Vi which represents the number of coded packets

that the AP has to broadcast, to ensure the correct reception of N packets by Wi.

Ghaderi et al. [32] show that Vi follows a negative binomial distribution. In particular,

for x ≥ N , the probability mass function fVi(x;N) of Vi (for i = 1, 2, . . . ,M) can be

defined as:

fVi(x;N) =

(
x− 1

N − 1

)[
1− PB,i(m)

]K
P x−N
B,i (m). (2.21)

fVi(x;N) is equal to zero if x < N . For this reason, the number of coded packets that

the AP has to deliver (such that all the receiving ends collect N coded packets) can be

defined as: W = max
i=1,...,M

{
Vi

}
. The probability mass function of W results to be [51]:

fW (x;N) = Prob
{
W ≤ x

}
− Prob

{
W ≤ x− 1

}
=

M∏
r=1

[
x∑

i=N

fVr(i;N)

]
−

M∏
r=1

[
x−1∑
i=N

fVr(i;N)

]
, (2.22)

where Prob
{
W ≤ x

}
is the probability that the value of W is equal to or smaller than

x (for x = 1, 2, . . . ,∞). According to (2.22), the average value of W can be defined as

follows:

Υ(m;N) =
∞∑
i=N

i fW (i;N). (2.23)

The goal of the proposed optimization is to find the value of m (namely, mo) which

minimises the mean delivery delay and energy consumption (needed to successfully

recover a generation). Hence, mo can be derived by solving the optimization problem

oSDI-NC1:

(oSDI-NC) minimize Υ(m;N) (2.24)

subject to m ∈ N. (2.25)

Let us consider again (2.22) and (2.23), we note that the oSDI-NC problem is nonlinear.

Moreover, because of the constraint (2.25), it also is an integer optimization problem.

For these reasons, it is hard to solve the oSDI-NC problem in a closed form, therefore,

we resorted to a suitable numerical approach2.

In order to reduce the computational load of the optimization process, in the fol-

lowing paragraphs we will propose an efficient suboptimal optimization method whose

1In the rest of this section with the symbol N we will refer to the set of non-null integer numbers.
2In particular, also in this case we resorted to the NOMAD solver [27].
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accuracy will be validated in Section 2.2.3. Let us define the mean Link-to-Link (L2L)

delivery delay for Wi (i.e., the mean time needed by the i-th node to collect K coded

packets) as

δ̂i(m;N) =
mN LTb

1− PB,i(m)
, (2.26)

where Tb is the transmission time duration of a bit for m = 1. From (2.26), we have that

the mean time needed to correctly receive a coded packet (normalized to the nominal

coded packet duration LTb) is

δi(m) =
m

1− PB,i(m)
. (2.27)

From (2.27), it is straightforward to note that the mean communication throughput

(normalized to LTb) can be expressed as 1/δi(m). In addition, let us define the L2L

mean energy εi(m) needed to successfully deliver a coded packet, normalized with re-

spect to LEb (i.e., the energy associated to the transmission of a coded packet composed

by L bits). In particular, we have

εi(m) =
m

1− PB,i(m)
. (2.28)

It is worth noting that, the normalized L2L mean delay and energy consumption, as-

sociated to the reception of a coded packet, in the case of the classical RLNC scheme

can be found by setting m = 1 in (2.27) and (2.28), respectively. Moreover, from (2.27)

and (2.28), we note that δi(m) = εi(m) (for i = 1, . . . ,M). Hence, we simplify our

analysis by defining as objective function, the function Γi(m) : N −→ R+ given by1:

Γi(m)
.
= δi(m) = εi(m) =

m

1− PB,i(m)
=

m

[1− Pe,i(m)]L
. (2.29)

In particular, form (2.29), we note that minimizing Γi(m) is equivalent to minimize,

at the same time, the mean L2L delay and energy consumption. It is worth noting

that, from (2.20) and (2.29), Γi(m) is monotonically decreasing (for i, j = 1, . . . ,M and

i 6= j):

Γi(m) ≥ Γj(m) iff γi ≤ γj. (2.30)

Therefore, for the sake of simplicity, in the rest of this section we consider the mini-

mization of the function Γi(·).

We propose a min-max-based optimization strategy as heuristic optimization crite-

1In the rest of the section with R+ symbol we will refer to the set of not negative real numbers.
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rion. Let us consider the problem below

(sSDI-NC) min max
i=1,2,...,M

Γi(m) (2.31)

subject to m ∈ N. (2.32)

The accuracy of the sSDI-NC model is validated in Section 2.2.3 by comparing it to the

oSDI-NC approach. In addition, we prove that the sSDI-NC is convex.

As for (2.30), the sSDI-NC problem is equivalent to the following one:

(esSDI-NC) minimize Γh(m), (2.33)

where h := arg min{γi|i = 1, . . . ,M}

subject to m ∈ N, (2.34)

where Wh is the node experiencing the worst propagation conditions. Let

Γ̂i(m̂) : R+/{0} −→ R+ be the continuous extension of Γi(m) (for i = 1, . . . ,M). The

following proposition holds:

Proposition 2.1. The function Γ̂i(m̂), for i = 1, . . . ,M is convex, continuously differ-

entiable and admits an unique minimum in R+/{0}.

Proof. See Applendix C.1.1.

Let us solve the esSDI-NC problem by relaxing the constraint (2.34). With other

words, we can restate it as

(reSDI-NC) minimize Γ̂h(m), (2.35)

where h := arg min{γi|i = 1, . . . ,M}

subject to m ∈ R+/{0}. (2.36)

From Proposition 2.1, the solution of the (reSDI-NC) problem is the root (r̂) of the

equation:

d

dm̂

(
Γ̂h(m̂)

)
= 0⇔ 1−Q

(√
m̂γh

)
− L

√
γhm̂

2π
e−

m̂γh
2 = 0. (2.37)

Finally from Proposition 2.1, if r̂ exists, m̃ is equal to min
{

Γh
(
br̂c
)
,Γh
(
dr̂e
)}

.

In order to validate the proposed optimization strategies, in the rest of this section

we address the case of slow faded propagation conditions. For the sake of the analysis,

we assume that the propagation conditions are constant for all nodes during the trans-
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mission of a coded packet (regardless of m)1 and statistically independent duting each

coded packet transmission. Hence, PB,i(m) can be defined as [50]:

PB,i(m) = 1− 1

γi

∫ ∞
0

[
1− Pe,i(m, γi)

]L
e
− 1
γi
γidγi, (2.38)

where γi = |αi|2 2Eb
N0,i

. The parameter |αi| is the channel attenuation (Rayleigh dis-

tributed), N0,i is the one side AWGN spectral density (at the i-th receing side), and γi

is the mean SNR per symbol experienced by Wi.

Also in this case the oSDI-NC optimization problem cannot be efficiently solved

in real time. However, the value of m can be optimized by resorting to the sSDI-NC

model. In addition, Proposition 2.1 still holds (see Appendix C.1.2). Hence, we have

that:

• the (sSDI-NC) optimization problem can be equivalently rewritten as reported in

(esSDI-NC);

• the solution (r̂) of the (rsSDI-NC) problem can be derived by solving the following

equation

d

d m̂

(
Λ̂(m̂)

)
= 0⇔

∫ ∞
0

[
1−Q(

√
m̂ γi)

]L
e
− 1
γi
γidγi

−L
√
m̂

2
√

2π

∫ ∞
0

√
γi

[
1−Q(

√
m̂ γi)

]L−1

e
− 2+m̂γi

2γi
γidγi = 0; (2.39)

• from Proposition 2.1, the solution (m̃) of sSDI-NC can be selected between br̂c
and dr̂e, by choosing the value that minimizes the objective function (2.31) .

2.2.2.1 Application to the Butterfly Network Topology

This section proposes a generalisation to the results provided in Section 2.2.2 to the

case of butterfly network models (shown in Figure 2.13). Even though the considered

network model is purely theoretical, it is useful to inspect the performance of the SDI-

NC approach in a multi-hop network.

We considered two sources, A and B, which transmit independent information mes-

sages. Each message is N packets long (message a for the node A and message b for

the node B). They are directed to three different destinations: C, D and R. Moreover,

the node R acts as a relay for nodes C and D. The node A transmits coded packets

1This occurs, for example, whenever data transmissions are organized on a frame-basis (as in
LTE [4] or WiMAX [52] systems).
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A

C

R

B

D

Figure 2.13: Butterfly network model.

obtained from the message a to nodes R and C. The node B does the same for nodes R

and D. For the sake of simplicity, we assume that:

• all the transmitting nodes access the medium in a contention free fashion;

• coding/decoding operations are performed by consenting the same finite field Gq.

Hence, the same number (N) of coded packets (L bits long) are needed (for each

information flow) by all the receiving ends to recovered transmitted generations.

Whenever the relay node R has recovered a and b, it can start the transmission of

coded packets r̂i (L bits long) obtained as follows:

r̂i = Mr · ci, (2.40)

where ci is the i-th K-ary coding vector. Mr is a P ×K matrix where the q-th column

is defined as aq ⊗ bq (i.e., the q-th coded packets of a and b are XORed bit-by-bit).

Moreover, Mr defines the original message r = {r1, . . . , rK} transmitted by the node

R. It is straightforward to note that in a butterfly network, each destination node (C or

D) receives two coded packets, one from a source node (A or B) and the other one from

the relay node R. The decoding process operated by node C (or D) can be summarized

as follows:

1. to recover message a (b) by decoding the packets received from node A (B),

see (2.18);

2. to recover message b (a) by decoding the packet received from node R. In partic-

ular the q-th plain packet of the message b (a) is given by rq ⊗ aq (rq ⊗ bq).

In order to implement the optimization criterion presented in Section 2.2.2 the

butterfly network has to be split into three broadcast subnetworks:

•
︷ ︸︸ ︷
ACR, subnetwork A, where A is the AP for C and R;
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•
︷ ︸︸ ︷
BRD, subnetwork B, in this case B is AP for R and D;

•
︷ ︸︸ ︷
RCD, subnetwork R, in this case R is the AP for C and D.

Finally, we can note that R is both a receiver (for A and B) and an AP (for the
︷ ︸︸ ︷
RCD

broadcast network). We assume that each node can receive coded packets coming from

just a transmitting node at a time. In particular, a receiving end starts the reception

of a new message only if it has successfully decoded (and acknowledged) the previous

one.

It is worth noting that, also in this network context, both the proposed SDI-NC

scheme and the optimization strategies are still valid. In particular, the optimal value of

m, namely, mX (where X ∈ {A,B,R}), can be derived for each broadcast subnetwork.

In order to compare the performance of the SDI-NC scheme with that of the clas-

sical RLNC, let us consider the mean End-to-End (E2E) delivery delay (normalized to

KLTb). Let δ̃ be the mean time required by C and D to successfully recover an infor-

mation packet belonging to a and b. The mean normalized E2E delivery delay results

to be

δ̃ = δ(mA) + δ(mB) + δ(mR), (2.41)

where mA, mB and mR are the optimized SDI values for subnetworks A, B and R,

respectively, derived according to the oSDI-NC or sSDI-NC optimization criteria. The

parameter δ(mX) is the overall mean delay (normalized to LTb) needed by all the

receiving nodes in the subnetwork X, (with X ∈ {A,B,R}), to successfully recover a

coded packet. Finally, (2.41), with mX = 1 (for X ∈ {A,B,R}), defines the mean

normalized E2E delivery delay (for a coded packet) in the case of the classical RLNC

scheme.

2.2.3 Preliminary Results

This section deals with the performance evaluation of the optimized SDI-NC scheme in

the case of broadcast and butterfly network models. In particular, we focus on AWGN

and slow faded propagation conditions. In addition, the section compares the oSDI-NC

model to the sSDI-NC one. Results are provided in terms of normalized mean delivery

delay.

2.2.3.1 Broadcast Network Scenario

In order to compare the oSDI-NC and sSDI-NC optimization models, the performance of

the optimized SDI-NC scheme has been inspected by resorting to computer simulations.

In particular we considered the following network scenarios:
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Table 2.1: Probability of nonsingularity for N = K in the case of N = 10.

q 24 25 26 27 28

pns 0.934 0.968 0.984 0.992 0.996

I The number of network nodes M is equal to 30. The maximum SNR (AWGN case)

and mean SNR (slow fading case) offsets among all the nodes is 10 dB. Without

loss of generality, we assume that WM experiences the best propagation conditions

while node W1 the worst ones1. The SNR (AWGN case) and mean SNR values

(slow fading case) associated to the remaining nodes span the interval [5, 15] dB or

[0, 10] dB, respectively. The SNR offset between any couple of nodes is constant.

II The number of receiving nodes is M ∈ [2, 32]. All the receiving ends experience the

same propagation conditions (namely, γi = 9 dB and γi = 5 dB in an AWGN and

slow fading regime, respectively).

Moreover, regardless of the scenario in use, we assume that all the coding operations

are performed within a (large enough) finite field so that two coded packets can be

considered linearly independent with high probability [53]. In particular, Table 2.1

shows the probability that a node has received K = 10 over N = K linearly independent

coded packets (without considering the channel effects) [40]. In particular, if coding

vectors are uniformly selected over a finite field with a dimension greater than or equal

to 28, the probability that two coding vectors are linearly dependent is less than 4 · 10−3.

Hence, we considered that: i) K ∼= N and K = 10.

Considering the scenario I and AWGN propagation conditions. Figure 2.14 shows

the normalized mean delivery delay (for two different packet lengths) as a function of

the mean SNR value among users (γ) defined as:

γ =
1

M

M∑
i=1

γi. (2.42)

In particular, the SDI values have been derived by the oSDI-NC and sSDI-NC criteria.

The figure clearly shows that, regardless of the optimization strategy in use, the op-

timum and heuristic SDI values are almost the same (there is a slightly difference for

γ ∈ [12.2, 12.4] dB).

Figure 2.15 compares the performance of the SDI-NC scheme (optimized according

to the oSDI-NC and sSDI-NC criteria) to that of the classical RLNC scheme. This

figure highlights the same behaviour for both the optimization criteria. Moreover, it

1It corresponds to Wh in esSDI-NC.
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Figure 2.14: Optimal SDI factors vs. the mean SNR among users (AWGN propagation
conditions and scenario I).
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Figure 2.15: Normalized mean delivery delay vs. the mean SNR among users (AWGN
propagation conditions and scenario I).

is worth noting that the optimized SDI-NC clearly outperforms the classical RLNC

scheme for mean SNR values which are less than 15 dB. In addition, Figure 2.15 shows

that the performance of the oSDI-NC and sSDI-NC models are exactly the same for

L = 512 bits. On the other hand, for L = 1024 bits, the sSDI-NC strategy is charac-

terized by a normalized mean delivery delay that is (at most) 0.4 % greater than that

characterizing the oSDI-NC approach.

Likewise, Figure 2.16 compares the normalized mean delivery delay as a function of

the number of receiving nodes in an AWGN regime, in the case of scenario II. Also in

this case, we can note that the optimization model oSDI-NC performs as well as the

sSDI-NC one. Finally, Figure 2.17-2.19 reports the performance of the proposed scheme
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Figure 2.16: Normalized mean delivery delay vs. the number of receiving nodes for
AWGN propagation conditions (scenario II).

in a slow fading regime. Numerical results are reported as a function of the parameter

γ̃ =
1

M

M∑
i=1

γi, (2.43)

and as a function of the number of receiving nodes. It is worth noting that: (i) the

optimized SDI-NC scheme outperforms the classical RLNC, and (ii) the oSDI-NC per-

formance is very close to the sSDI-NC one. In particular, Figure 2.18 compares the

performance of sSDI-NC and oSDI-NC. Both the proposed optimization strategies are

almost characterised by the same normalized mean delivery delay. The only exception

is represented by the case of L = 1024 bits where the sSDI-NC approach is character-

ized by a normalized mean delivery delay that is (almost) 0.34 % greater than that of

the oSDI-NC model.

2.2.3.2 Butterfly Network Scenario

In this case we consider a butterfly network scenario (shown in Figure 2.13) where:

• γi values of the end points of A-C and A-R links are equal to 9 dB in AWGN

regime, and γi values are equal to 5 dB in the case of a slow fading regime;

• γi values of the end points of B-D and B-R links are equal to 10 dB, and γi values

are equal to 6 dB in the case of a slow fading regime;

• SNR values at the end points of R-C and R-D links are equal and take values

within [5, 15] dB (likewise, for the case of a slow fading regime, the mean SNR
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Figure 2.17: Optimal SDI factors vs. the mean SNR among users in faded propagation
conditions and scenario I .
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Figure 2.18: Normalized mean delivery delay vs. the mean SNR among users (faded
propagation conditions and scenario I).

values are equal and belong to the [0, 10] dB set);

• communications rely on the SDI-NC approach are characterized by a generation

length of 10 packets with K ∼= N ;

• the packet length has been set equal to 512 and 1024 bits.

Numerical results (under AWGN and a slow fading regime), obtained by resorting to

computer simulations, are given in Figure 2.20. This figure shows the normalized mean

E2E delivery delay (per-information packet) as a function of the (mean) SNR values

associated to the receiving nodes of the
︷ ︸︸ ︷
RCD network. Figure 2.20 clearly points out
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Figure 2.19: Normalized mean delivery delay vs. the number of receiving nodes for
faded propagation conditions (scenario II).

that, regardless of the chosen optimization and channel model, the SDI-NC scheme

outperforms the classical RLNC scheme.

In this section we proposed a novel RLNC scheme based on the SC approach. Results

presented in the section clearly show that the proposed SDI-NC scheme: (i) can be

easily integrated within an existing RLNC implementation, (ii) is characterized by

the same implementation complexity of a system adopting the SC principle, and (iii)

can be successfully optimized by resorting to a convex heuristic approach. Finally, we

demonstrated that the optimized SC-NC schemes significantly outperforms the classical

RLNC scheme.

2.2.4 Short Message Transmission over Satellite Networks

This section draws inspiration from the proposal presented in Section 2.2.2. In par-

ticular, we extend the aforementioned proposal to a generic satellite network. More

precisely: (i) we focus on the issue of reliably deliver of short messages through satellite

links, and (ii) we aim at minimizing the overall communication delay on a MG basis.

In the field of satellite networks, reliability of broadcast communication has been

addressed by means of Forward Error Correction (FEC) codes. Modern systems can

have a feedback channel, e.g., DVB-RCS or DVB-RCS2, allowing the adoption of an

ARQ-based error control protocol. However, the existing approaches are not suitable for

short-duration communications, for e.g., traffic information, meteorological conditions

and alerting systems, as in this case the message-based services are usually characterized

by short, sporadic messages that have to be broadcasted reliably to a large number of

clients [54] and the ARQ-based systems suffer from scalability issues. This can be
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(b) Slow fading regime

Figure 2.20: Mean normalized end-to-end delivery delay as a function of the SNR (or
mean SNR) values at the C and D sides.

overcome by using the NC principle as error control strategy [55].

Differently from the approaches previously proposed in the literature, this section

proposes a Modified NC (MNC) scheme where the transmission of each packet is itera-

tively repeated m times, with m assumed as a system parameter. It is straightforward

to note that this is equivalent to increase the duration of each symbol of a factor m with

respect to the solution proposed in Section 2.2.2. However and unlike Section 2.2.2, we

assume that m copies of the same packet are soft-combined symbol-by-symbol by each

user during the receiving phase, then the network client decides if the packet has been

correctly received (or not).
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Figure 2.21: Considered GEO satellite system model.

2.2.4.1 System Model

In this section we will consider a Geostationary satellite (GEO) system (sketched by

Figure 2.21) where a Control Centre (CC) can send short data messages to M users

(namely, W1,W2, . . . ,WM) spread across a region by mean of the satellite system. It is

outside of the scope of the present work to identify the particular satellite standard, as

the proposed approach can work with any satellite system able to send short messages.

It is worth noting that the satellite transmits each information message (i.e., the

short messages) by using the NC principle (see Section 2.2.1.1). Whenever a receiving

node has successfully recovered an information message, it sends back an ACK1 to

the satellite. As soon as all the nodes have successfully recovered the same message,

the satellite can start the transmission of a new one. For the sake of the analysis,

we assumed that NC operations are implemented on-board the satellite. However, the

provided theoretical framework remains valid even when the NC process is implemented

in the CC. In carrying out our analysis we have referred to the QPSK modulation

scheme2 for the data transmission in the considered scenarios.

2.2.4.2 MNC Principle

This section deals with the performance evaluation of the proposed MNC scheme by

considering the broadcast network topology (sketched in Figure 2.21), under Rician

propagation conditions. The optimization strategy proposed in this section comes from

the model proposed in Section 2.2.2. However, in this case we will show how to optimise

the value of m in order to minimize the mean overall communication delay. In the rest

1We have assumed here, without any loss of generality, that ACK messages are sent across a fully
reliable channel.

2Results provided in this section are quite general and can be easily extended to different modu-
lation schemes, like 8PSK, 16APSK, or 32APSK, etc.
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of this section, the parameter m will be called Repetition Index (RI).

Let us consider the case of a slow Rician fading regime. In particular let us assume

that: (i) propagation conditions are kept constant during the transmission of m copies

of the same coded packet (regardless of the value of m), (ii) the M communication

channels are independent, and (iii) by using suitable radio resource allocation scheme,

they can be considered statistically independent. For these reasons we can assume that

losses of coded packets at each receiving end occur as statistically independent events.

Due to the fact that the channel fading is slow, we can assume an ideal coherent

detection at each receiving node side.

Let γi = α2
i
Eb,i
N0

be the SNR at the Wi side where: α2
i is a noncentral χ2-distributed

random variable (with two degrees of freedom) representing the squared magnitude of

a Rice channel coefficient (αi). The parameter Eb,i is the energy associated to each

symbol received by Wi. The probability density function of γi [56] is given by

r(γi) =

(
1 + V

γ

)
e−

(1+V )γi+V γ

γ I0

(
2

√
V (1 + V )γi

γ

)
(2.44)

where γ is the average SNR characterizing each receiving node, V is the well known

Rician parameter [56], and I0(·) is the 0-th order modified Bessel function of the first

kind. For these reasons the PC(m) in this case can be expressed as:

PC(m) =

∫ ∞
0

[
1− Pe(m, γ)

]L
r(γ) dγ. (2.45)

where Pe(m, γ) = Q
(√

mγ
)

is the expression of the bit error probability in the case of

the QPSK modulation.

Let m and K be the chosen RI factor and the generation length, respectively. Let us

extend the combinatorial analysis presented in Section 2.2.2 by considering the random

variable Si (for i = 1, . . . ,M) which represent the number of transmission attempts

performed by the satellite to ensure the correct reception of an information message

by Wi (i.e., to ensure the correct reception of K linearly independent coded packets).

Moreover, let

H = max
i=1,...,M

{
Si

}
(2.46)

be the random variable representing the number of transmission attempts performed by

the satellite to ensure the correct reception of a generation by all the receiving nodes.

The function expressing the probability that Si ≤ j (for j ≥ K) can be expressed
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as [40, 57]:

fi(j) =

j∑
a=K

(
j

a

)
P a
C(m)

[
1− PC(m)

]j−a
pNC(a,K) (2.47)

where

pNC(a,K) =
K−1∏
b=0

[
1− 1

qa−b

]
. (2.48)

The term pNC(a,K) expresses the probability that at least K over a ≥ K coded packets

(belonging to the same generation) are linearly independent [40]. For j < K, fi(j) is

null.

From (2.46) and (2.47), the average value of the random variable H can be expressed

as [51]:

ζNC(m) =
∞∑
n=0

n

{
Prob

{
H ≤ n

}
− Prob

{
H ≤ n− 1

}}

=
∞∑
n=N

n

{
M∏
r=1

fr(n)−
M∏
r=1

fr(n− 1)

}
. (2.49)

From (2.49) we define the mean broadcast delay as the mean time needed by all the

network nodes to successfully receive an information message (K packets long). It can

be expressed as follows:

Λ̃NC(m) = m ζNC(m) Ts (2.50)

where Ts is the mean propagation delay of a coded packet when the RI factor is equal

to one (i.e., m = 1). In order to make our analysis general, we refer in what follows to

the mean broadcast delay (ΛNC(m)), normalized with respect to the parameter K and

Ts:

ΛNC(m) =
Λ̃NC(m)

K Ts
=
m ζNC(m)

K
. (2.51)

Further, it is important to note that the normalized mean broadcast delay of the

classical RLNC scheme is equal to ΛNC(1), i.e., it is equal to ΛNC(m) for m = 1.

As a consequence, we can derive the optimal RI factor by solving the following

optimization problem:

(oMNC) minimize ΛNC(m) (2.52)

subject to m ∈ N (2.53)

The oMNC is an integer nonlinear optimization problem whose solution is hard to derive
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in a closed form, hence we need to resort to derivative-free methods1.

As an alternative to the previous approach, we propose to consider a novel heuristic

model. It is characterized by a reduced computational complexity, and at the same

time, the obtained solution is close enough to the optimal one. It is useful to define

the mean link delay (λ̂(m)) as: the mean time required by a given receiving node to

successfully collect an arbitrary number N ≥ K of coded packets. It can be expressed

by:

λ̂(m) =
mN Ts
PC(m)

. (2.54)

Let P be the set of real numbers equal to or greater than one; the mean link delay

function, normalized to G Ts, ΛL2L(m) : N→ P results to be:

ΛL2L(m) =
λ̂(m)

GTs
=

m

PC(m)
. (2.55)

It is worth noting that the (2.55) is equivalent to (2.27). However, in this case, m rep-

resents the RI. In addition, let us consider the idea underlying the esSDI-NC problems:

it aims at optimizing the SDI factor only considering the network user affected by the

worst propagation conditions. In this case we assume that all the users are character-

ized by the same average SNR. Hence, we proposed to heuristically optimize the RI

factor by the following model:

(hMNC) minimize ΛL2L(m), (2.56)

subject to m ∈ N. (2.57)

In order to solve the hMNC optimization problem, let us prove the proposition below:

Proposition 2.2. Let Λ̂L2L(m̂) : P → P be the continuous expansion of the function

ΛL2L(m) : N→ P. The function Λ̂L2L(m̂) is continuously differentiable and convex on

its domain.

Proof. See the Appendix C.2.1.

For the sake of clarity, proving Proposition 2.2 is equivalent to prove Proposition 2.1

under Rician propagation conditions.

In order to solve the hMNC problem, let us consider the following one:

(rMNC) minimize Λ̂L2L(m̂), (2.58)

subject to m̂ ∈ P. (2.59)

1In particular, in this section we have resorted to the NOMAD solver [27].
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Since Λ̂L2L(m̂) is convex in its domain see (Proposition 2.2), the solution (m̂o) of the

rMNC problem is the real root (if it exists) of the following equation:

d

d m̂

(
Λ̂L2L(m̂)

)
= 0⇔ w(m̂)− t(m̂) = 0 (2.60)

where

w(m̂)
.
=

∫ ∞
0

[
1−Q(

√
m̂ γ)

]L
r(γ) dγ (2.61)

and

t(m̂)
.
=
L
√
m̂

2
√

2π

∫ ∞
0

√
γ
[
1−Q(

√
m̂ γ)

]L−1

e−
m̂γ
2 r(γ) dγ. (2.62)

In particular, the solution (mo) of the hMNC problem is represented by dm̂oe or

bm̂oc. Hence, the hMNC problem can be easily solved by choosing the value minimizing

the (2.56). If (2.60) has no real root, the solution of the hMNC problem is mo = 1.

Even though a closed-form solution to the (2.60) is not achievable, its convexity ensures

that the rMNC problem can be efficiently solved by resorting to suitable numerical

approaches [58]. In particular, we have resorted here to the CVX solver [59].

2.2.4.3 Numerical Results

This section, compares the performance of the classical RLNC with the optimized MNC

schemes. We have considered two different scenarios:

I The satellite transmits packets 42 or 21 bytes long to 20 receivers (i.e., M = 20). Each

receiving node is characterized by the same average SNR value γ ∈ [0, 10] dB;

II The satellite transmits to a variable number of nodes packets 42 bytes long. Also in

this case, we have that each node is characterized by the same mean SNR value:

γ = 5 dB.

Moreover, we assumed for all the RLNC-based communications the finite field size

q = 22 (i.e., all the items of coding vectors are 2 bits long) and a generation length of

20 information packets. Finally, we set the parameter V to 5 dB.

Figure 2.22 shows the normalized mean broadcast delay as a function of the SNR

value. On the other hand, Figure 2.23 shows the same performance metric as a function

of the number of receiving nodes in the network scenario II. We can note that both

the oMNC and hMNC models minimize the normalized mean broadcast delay of the

MNC scheme if compared to the RLNC. For instance, Figure 2.23 shows that in a
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Figure 2.22: Normalized mean broadcast delay of RLNC and MNC vs. the average
SNR value (Rician propagation conditions).
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Figure 2.23: Normalized mean broadcast delay of RLNC and MNC vs. the number of
receiving nodes (Rician propagation conditions).

network composed by M = 1024 users, the MNC (optimized by the hMNC model) is

characterized by a (normalized) mean broadcast delay that is almost 5-fold smaller than

that of the RLNC. In addition to that, the hMNC model is characterized by almost the

same performance that we would have by using the oMNC model. Finally, numerical

results show that the optimized MNC scheme is characterized by a performance gain

of almost 5-12 fold if compared to the classical RLNC scheme.
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2.2.5 Cross-Layer Design of Reliable Multicasting in LTE

The theoretical model presented by Section 2.2.2 can also be used to implement an

energy-aware communication scheme that is suitable for multicast and broadcast data

delivery over LTE and LTE-Advanced networks. In this case, the proposed communi-

cations scheme minimises the average energy consumption of the macro base station

that is required to deliver a message to all users in a multicast group.

In Section 1.3.2, we outlined the basic principles of the eMBMS communication

framework. In brief, 3GPP standards have proposed to eMBMS transmission schemes:

the SC-eMBMS and the MBSFN-eMBMS one. The latter one is very beneficial for

users positioned close to the cell-edge but MCSs of delivered services are chosen by

the core network and are same for all eNBs [17, 4]. It is straightforward to note that

the single-cell approach is more convenient than the other if: (i) users targeted by the

multicast/broadcast services belong to the same cell, or (ii) carrier needs to control

the service level of communications on a per-cell basis. In this section, we consider

a SC-eMBMS deployment where the eNB delivers broadcast services to all UEs that

belong to one cell.

The energy consumption of 3G and 4G cellular networks is mainly attributed to

macro base stations (eNBs for short) and represents a major challenge to mobile net-

work operators [60]. Nowadays, political and national initiatives currently support

trends towards energy-saving in information technology and telecommunications, with

the specific aim to lower the CO2 emissions. Traditional solutions to reduce the en-

ergy demand are focused on reducing the eNB transmission power or even switching-off

macro eNBs with low or no traffic load services [61]. These solutions should take into

consideration the user QoS and the channel propagation conditions in order to avoid

possible degradation in the user QoS with reduced energy usage. For example, in [62]

the authors propose an energy-efficient optimization strategy that jointly considers the

radio resource allocation process and the user admission control.

Reduced complexity Application Layer Random Linear Network Coding (AL-

RLNC) solutions are currently proposed as alternative to the classical Application

Layer-FEC (AL-FEC) schemes [32] that are used for multimedia delivery in MBMS [63].

AL-RLNC solutions already provide reliable multimedia delivery over wireless net-

works [64]. However, given the large end-to-end delays between the application-layer

entities compared to the short message transmission time, authors in [65] proposed the

integration of the RLNC solution into the MAC layer of the LTE/LTE-A RAN protocol

stack. MAC-RNC exploits the very small round-trip delay at the MAC layer to reduce

the amount of redundancy produced by AL-RLNC. This makes MAC-RNC a suitable

solution for multimedia delivery over LTE-A [66].
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Figure 2.24: E-RLNC optimized architecture for eNB and UE.

In this section, we extend the work presented in [65] to realise a fully reliable and

energy-aware communication protocol that is suitable for eMBMS delivery over LTE-A.

The proposed Extended-RLNC (E-RLNC) represents a possible implementation of the

SDI-NC principle presented in Section 2.2.2. Briefly, the proposed E-RLNC aims at

minimising the average energy consumption required to deliver a message to all users in

a multicast group, by leveraging all available information on users’ channel conditions

and requested QoS to optimise the overall number of transmitted packets that ensure

correct delivery of the transmitted message.

2.2.5.1 System Model

The integration of the RLNC communication scheme within the MAC layer requires

some changes to the LTE-A protocol stack. Figure 2.24 shows the integration of the

E-RLNC scheme in the LTE-A protocol structure and the cross-layer interactions to

process a downlink data flow at the macro eNB side.

Let us consider a similar information flow to that in Figure 2.24 that is directed

to a MG composed of several mobile UEs. Starting at the PDCP layer the PDUs are

segmented/concatenated at the RLC to produce RLC PDUs of suitable length. A given

RLC PDU directed to a MG will be kept in an appropriate buffer until all the UEs

belonging to that MG will have successfully acknowledged (by an ACK message) the

reception of the PDU itself. The RLC PDUs are then forwarded to the MAC layer. Each
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MAC SDU represents the source message of the MAC-RNC sublayer. This sublayer,

proposed in [65], splits the MAC SDU into K equal-length source symbols (namely,

s1, s2, . . . , sK) and then encodes them in a RLNC fashion [67] (see Section 2.2.1.1).

The output of the coding process (i.e., the output of the MAC-RNC sublayer) is a

stream of coded symbols vi =
∑K

j=1 cj · sj (where cj, for j = 1, 2, . . . , K, is the j-th

coding vector).

Unlike [65], the protocol stack we are proposing in this section is characterized by

a MAC layer that generates a stream of MAC PDUs, where each PDU comprises m

copies of the same coded symbol. All the MAC PDUs are forwarded to the PHY layer

and mapped on different TBs1. Each UE can recover the original coded symbol (vi)

by soft-combining (according to the maximum likelihood principle) the m copies of vi

forming the MAC PDU. Whenever all the UEs have recovered the data message (i.e.,

when all the UEs has collected at least K linearly independent coded symbols), the

eNB starts the transmission of the next one (it starts the transmission of the next

MAC SDU). Finally, it is straightforward to note that the proposed approach draws

inspiration from the proposal described in Section 2.2.4.

In Section 2.2.5.2 will be discussed how to efficiently optimise the number of copies of

the same coded symbols held by a TB. That is a key aspect in the energy efficient error

control protocol we are proposing. If the m value is too small, the error probability of

each coded symbol cannot be effectively reduced. However, as the value of m increases,

the energy need to transmit a TB becomes bigger. The optimum value of m is a trade-off

between the minimisation of the TB error probability and energy needed to broadcast

the TB itself.

It is important to note that due to the fact that a multicast/broadcast communi-

cation flow adopts the Unacknowledged Mode at the RLC layer, it cannot adopt any

classical error control strategy such as ARQ or HARQ strategies. However, [68] shows

that an eNB can collect ACK messages from UEs targeted by eMBMS services. This can

be achieved for the UEs transmitting through the PUCCH channel that is commonly

used in the case of the HARQ [69].

A key aspect of the error control strategy that we are proposing is represented by the

optimization of the index m as a system parameter (i.e., a parameter shared among the

eNB and the UEs belonging to the same MG). As will be described in the next section,

the optimization algorithm should determine the best choice of m by considering the

following inputs:

• the channel conditions reported by each UE, using the CQI, in the MG

1We assume here that a TB can hold just one MAC PDU.
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• the length L (expressed in bits) of each information symbol

• the Modulation and Coding (MC) scheme used to transmit a given eMBMS flow.

In our model the optimization of the index m is in charge of the RLC layer as this layer is

able to control and thus optimize different multicast communication flows independently

(i.e., on a MG basis). Moreover, during the optimisation process the following cross-

layer interactions are performed between RLC, MAC and PHY layers:

• the MAC and PHY layers have to know the index m in oder to provide a feasible

allocation of TBs within subframes, and to correctly perform soft-combining of

different copies of the same coded symbol, respectively;

• the MAC and RLC layers share all information related to the propagation condi-

tions of the UEs.

The optimized m value and the reported CQI values of all UEs in the same MG are

shared among layers of the communication stack by the adaptive layer [70].

2.2.5.2 Energy Efficient E-RLNC Scheme

A multicast communication in a eMBMS network can be modelled efficiently as a

classical AP where a node (namely, the eNB) transmits the same data to a set of devices

(the UEs). Figure 2.1 shows the network topology of a MG composed by M UEs. Let

Wi (for i = 1, . . . ,M) be the i-th UE of a MG. Whenever Wi is able to recover the

overall information message (transmitted according to the RLNC principle), it sends an

ACK to the eNB. The eNB continues to transmit coded symbols belonging to the same

message until each UE of the MG has successfully recovered the information message

(i.e., until the eNB has collected a number of ACKs equal to M).

The theoretical derivation proposed in the rest of the section assumes that all the

downlink transmissions directed to the members of a given MG adopt QPSK modulation

scheme1.

The E-RLNC scheme described in Section 2.2.5.1 is characterized by only one opti-

mization variable: the index m. In this section we define an energy efficient model for

the optimization of m that is able to minimize the energy related to the transmission

of a message.

Let us consider again a given MG whose network topology is reported in Figure 2.1.

In addition to this, we have assumed that: (i) the losses of different TBs are statistically

1It is important to note that the proposed analysis is general and can be easily extended to different
modulation schemes, like 16-QAM or 64-QAM.
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independent events, (ii) the propagation conditions are constant within a TB but are

statistically independent between different downlink communication links. The i-th UE

belonging to the considered MG receives TBs with the Signal-to-Noise Ratio (SNR)

γi = α2
i
Eb
N0,i

where: (i) α2
i is a random variable equal to the square of the Rayleigh

channel coefficient, (ii) Eb is the energy associated to each symbol, and (iii) N0,i is the

total noise power associated to each symbol received by the i-th UE.

Hence, as expressed in (2.38), the TB error probability characterizing the i-th UE

can be given by:

Pi(m) = 1−
∫ ∞

0

1

γi

[
1− pi(m)

]L
e
− 1
γi
γi dγi (2.63)

where L is the coded symbol length (expressed in bits), γi is the average SNR (at the

ui side), and the f(·) is the probability density function of γi. Finally, the term pi(m)

defines the bit error probability (as a function of the index m) affecting the reception

at the ui side. In the rest of this section, we refer to the bit error probability of the

QPSK modulation (see (2.20)): pi(m) = 1
2

erfc
(√

r γi
2

)
.

Let us consider the combinatorial analysis reported in Section 2.2.4.2. In addition,

considering that Ui (for i = 1, . . . ,M) is the number of TBs transmitted by the eNB

until Wi has successfully recovered the information message, and that the random

variable T gives the total number of TBs required to deliver the same message to all

UEs in the MG. Hence, T = max
i=1,...,M

{
Ui

}
.

Unlike 2.47, in this case we have that the i-th UE recovers the information message

within N transmissions if: (i) Wi will be able to successfully receive a given amount of

error-free TBs (i.e., error-free coded symbols), (ii) these ones are linearly independent,

and (iii) the ACK will be successfully received by the eNB. Hence, the probability that

Ui is equal to or less than N (for N ≥ K) is [40]:

Fi(N) = hi(N)
N∑

a=K

(
N

a

)
PN−a
i (m)

[
1− Pi(m)

]a
g(a). (2.64)

The probability that an ACK message (transmitted by ui) is successfully received by

the eNB within N trials is

hi(N) = 1− PN−K+1
ack,i (2.65)

where Pack,i is the error probability of an ACK message transmitted by the i-th UE.

Likewise (2.48), the term g(a) expresses the probability that at least K symbols over
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a, for a ≥ K, are linearly independent, and in this case, can be restated as:

g(a) =
K−1∏
t=0

[
1− 1

qa−t

]
.

We remark that q is the finite field size.

From the (2.64), and likewise to the result reported in (2.49), the mean value of T

is:

tnc(m) =
∞∑
n=K

n

{
M∏
v=1

Fv(n)−
M∏
v=1

Fv(n− 1)

}
. (2.66)

Let Êb be the energy associated to the transmission of a TB using m = 1. The

mean energy consumption enc(m), normalized by Êb is

enc(m) = r tnc(m). (2.67)

For m = 1, (2.67) expresses the (normalized) mean energy consumption of an informa-

tion message by using RLNC in the place of the E-RLNC.

The E-RLNC scheme improves energy efficiency by choosing the index m minimizing

the mean energy consumption of a MG. This is the aim of the following optimization

problem:

(P1) minimize enc(m) (2.68)

subject to r ∈ N \ {0}. (2.69)

Due to the fact that P1 is a nonlinear problem, it is not feasible, from a computational

point of view, to solve it in real time. In the rest of this section we will propose an

effective heuristic approach to overcome this problem.

A Convex Heuristic Model Let Z be the mean number of coded symbols (i.e.,

{v1, v2, . . . , vZ}) that the eNB has to generate to successfully deliver a linearly indepen-

dent set of MAC PDUs.

Let uh be the UE of the MG experiencing the worst propagation conditions, we can

approximate the mean energy consumption (normalized by Êb Z) as follows:

l(m) =
r

1− Ph(m)
. (2.70)

As we can note, (2.70) approximates the (2.67).
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Let l̃(m̃) be a function defined similar to (2.70) over a set of real numbers that are

equal to or greater than one. Regardless of the value of Z, from (2.70), we can define

the following heuristic strategy for optimizing the index m:

(P2) minimize l(m), (2.71)

subject to r ∈ N \ {0}. (2.72)

In order to solve P2, we can relax the constraint (2.72) and restate P2 in terms of a

simple minimization of l̃(r̃). It is proved in the Appendix C.1.2 that l̃(r̃) is convex,

hence, it can be minimized for that value of r̃ (namely, r̃o) that is a solution of the

following equation:

d

d r̃

(
l̃(r̃)
)

= 0⇔
∞∑
n=0

n

{
Prob

{
H ≤ n

}
− Prob

{
H ≤ n− 1

}}

⇔
∫ ∞

0

[
1− 1

2
erfc
(√r γh

2

)]L
e
− 1
γh
γhdγh

− L
√
r̃

2
√

2π

∫ ∞
0

√
γh

[
1− 1

2
erfc
(√r γh

2

)]L−1

e
− 2+r̃γh

2γh
γhdγh= 0. (2.73)

Finally, the objective function (2.71) of P2 problem is minimized by that value of r = ro

such that:

• ro = 1, if (2.73) has no real root;

• ro = argmin{l(m) | r = dr̃oe, br̃oc}, otherwise.

2.2.5.3 Numerical Results

This section shows the numerical results of the proposed E-RLNC scheme by comparing

the performance of the classical RLNC (i.e., the E-RLNC scheme with the index m equal

to one) to the one of the E-RLNC optimized by resorting to the P1 or P2 optimization

model. We remark that the P2 model represents a heuristic strategy able to provide a

feasible but suboptimal solution to the P1 problem.

The performance of the proposed E-RLNC scheme is investigated for a MG com-

posed of a variable number of UEs. All the eMBMS communication flows that adopt

the RLNC or E-RLNC are characterised by a finite field of size q = 28, and a genera-

tion length K = 20. The probability of correct delivery of the ACK message to 99%.

Finally, two information symbols lengths L equal to 20 and 40 bytes are used.

In order to inspect the performance of the E-RLNC over the classic RLNC and to

show effectiveness of the proposed heuristic approach (i.e., the optimization model P2)
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Figure 2.25: Value of m as a function of γh value (scenario A).
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Figure 2.26: Mean energy consumption as a function of γh value (scenario A).

over the optimization model P1, we considered the following scenarios:

A M = 30 UEs experience different channel conditions. The 1-st UE and the 30-th are

characterized by γ1 = so + ∆ dB and γ30 = 10 + ∆ dB, respectively. Moreover,

γi = γi−1 + ∆ dB (for i = 2, . . . ,M − 1). Finally, so takes values in the interval

[0, 10] dB, and ∆ = 10
M−1

dB.

B M takes values in the [2, 128] interval, γi = γ̃ (for i = 1, . . . ,M). The parameter

γ̃ = 3.5 dB.

Let us focus on the network scenario A. Figure 2.25 shows the optimum value of m

as a function of the value of γ1. The figure clearly shows that the indices of m selected

by the proposed convex heuristic (i.e., P2) strategy typically overlaps those derived by
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Figure 2.27: Mean energy consumption as a function of γ̃ value (scenario B, M = 30).
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Figure 2.28: Mean energy consumption as a function of number of UEs belonging to
the MG (scenario B).

the optimum model (i.e., P1), regardless of the chosen information symbol length. In

particular, even if there are some slight differences, it does not have any impact on

the overall system performance. This is clearly highlighted by Figure 2.26 showing the

normalized mean energy (of a single information symbol) as a function of the γ1 value.

In addition to that, we can note that the E-RLNC clearly outperforms the classical

RLNC strategy.

Let us consider network scenario B, where all of the UEs experience virtually the

same propagation conditions. Figure 2.27 shows the normalized mean energy con-

sumption (on an information symbol basis) as a function of the γ̃. Here again, the

performance of the proposed convex heuristic strategy is close to that of the optimum

one. Moreover, also in this case we can note that the E-RLNC strategy outperforms
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the classical RLNC one.

Finally, let us consider Figure 2.28 it shows the same performance metric as a

function of the M value. We can note that: (i) the performance gain of the heuristic

strategy overlaps that of the optimum one, regardless of the M value, and (ii) the E-

RLNC scheme is characterized by a performance gain of almost two-fold compared to

the classical RLNC.

Finally, the numerical results show that the performance of the heuristic strategy is

close to that of the optimal model, and that the proposed E-RLNC scheme significantly

outperforms the classical RLNC scheme regardless of the optimisation models in use.

E-RLNC performance gain of almost two-fold is achieved compared to the classical

RLNC scheme.
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Chapter 3

Unacknowledged Rate Allocation

Strategies

In the previous chapter we inspected a rate adaptation strategy integrated to an error

control strategy. In the following, we propose an completely unacknowledged version

of the Modified RLNC (MNC) suitable for delay sensitive service delivery. In particu-

lar, Section 3.1 provides a couple of multicast communication strategies which aim at

significantly improving system performance both in terms of transmission energy and

delivery delay associated to the transmission of the whole data flow. Reported analyt-

ical results clearly show that both the strategies achieve the aforementioned goals in

comparison with the RLNC alternative.

Section 3.2 proposes a rate allocation strategy which draws inspiration form that

proposed at the beginning of Section 3.1. However, in this case we aim at optimizing

the radio resource allocation process so that users, according to their propagation con-

ditions, can receive video streams at the maximum achievable service level in a LTE-A

cell. A key aspect of the proposed system model is that video streams are delivered

as eMBMS flows by using the random linear network coding principle. We propose

two resource allocation strategies based an optimal and heuristic resource allocation

solutions. In particular, we prove that the heuristic strategy is characterized by a re-

duced computational load. Simulation results show that both strategies significantly

outperform alternatives at the state of the art in terms of the service level perceived by

users.
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3.1 Standard Agnostic Rate and Energy Optimiza-

tion

In 4G cellular systems, several error control strategies [22] has been proposed, with the

aim of supporting downlink PtM flows according to the expected QoS levels. However,

these solutions do not consider the following aspects: (i) the number of UEs associated

to the same communication flow (i.e., the number of UEs belonging to the same MG),

and (ii) the QoS level actually experienced by the MG as a whole. Due to the complexity

of managing multicast/broadcast services through retransmission processes, usually 4G

communication systems (such as the 3GPP’s LTE-Advanced) avoid the use of ARQ or

HARQ schemes, simply adopting AL-FEC techniques. Nevertheless, several seminal

papers [71, 72] have shown that the overall system performance can be improved by

using NC solutions as an alternative to the AL-FEC.

The NC principle, introduced by Ahlswede et al. [28], has been shown by Ghaderi et

al. [32] to be advantageously adopted in PtM communications as error control protocol.

Despite to the solid theoretical analysis, that proposal assumes that all the terminals

acknowledge the reception of an information message. As a consequence, this approach

can not directly applicable to 4G networks, due to the lack of a scalability.

This section aims at proposing a couple of MNC schemes which significantly out-

perform the RLNC alternative considered in [32] both in terms of the transmission

energy cost and delivery delay of the whole data flow. It is worth noting that the pro-

posed communication methods require that all the UEs of the MG have to recover the

transmitted flow with a decoding probability which is equal to or grater than a given

threshold value.

The proposed MNC schemes achieve the aforementioned goals in two ways: (i) by

optimally selecting the transmission data rate, while the power associated to transmis-

sion of each packet is kept constant, or (ii) by optimizing the transmission power cost

and keeping constant the transmission rate. In the rest of the section we refer to those

strategies as Constant Power MNC (CP-MNC) and Constant Rate MNC (CR-MNC),

respectively. In addition, a theoretical framework for characterizing and efficiently op-

timizing both the proposed approaches are presented.

A PtM communication pattern typical of a 3G/4G network can be modelled accord-

ing to the multicast network model where a BS delivers a multicast service to a set of

M UEs forming the MG. The NC communication strategy considered in this section

can be summarised as follows.

Let E = {e1, e2, . . . , eK} be an information message composed by K information

packets (see Section 2.2.1.1). The BS linearly combines (in a rateless mode) all the
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information packets and transmits a stream of N ≥ K coded packets to the UEs of the

MG. In the following, the widely known RLNC strategy [67] is considered. Whenever a

UE successfully receives (at least) K linearly independent coded packets over N , it can

retrieve the original information message E. Conversely, if the number of the received

and linearly independent coded packets is less than K the decoding operation fails, the

UE can not retrieve the original information message, and it is definitively lost because

retransmissions of the same information message are not allowed1.

It is worth noting that in the case of the CP-MNC scheme each coded packet is

transmitted at a rate that is m times smaller than the maximum allowed one (with

m ≥ 1) such that the symbol time duration is m times greater than the nominal value

T . On the other hand, the CR-MNC scheme requires that transmission energy of each

symbol is m times greater than a target value E (i.e., the power associated to the

transmission of each coded packet is m times greater than a nominal value). Differently

to CP-MNC, in this case the transmission rate does not change.

In spite of the increasing of the transmission time or transmission energy associated

to each coded packet, this section shows that is possible to outperform the RLNC

scheme, by means of a suitable optimization of the pair (m,N), both in terms of the

overall delivery delay and energy consumption needed to complete the transmission of

the set of N coded packets, for a given decoding probability of the information message

(on a MG basis).

3.1.1 Optimization Frameworks

Let us consider again the multicast network model presented in Section 3.1, we have

assumed slow-faded Rayleigh propagation conditions for all the communication channels

linking each UE (of the MG) to the BS. In addition to this, we have also assumed

that losses occur independently among UEs of the same MG, and the use of a BPSK

modulation scheme2 in transmission. Hence, in the case of the CP-MNC and CR-MNC

approaches, the corresponding signals associated to the transmission of a generic coded

packet (for 1 ≤ i ≤ L) can be expressed as follows

si(t) =


√

2E
T
di cos

(
2πfot

)
for CP-MNC with 0 ≤ t ≤ mT√

2mE
T
di cos

(
2πfot

)
for CR-MNC with 0 ≤ t ≤ T

(3.1)

1We assumed that the BS can not know if a specific UE has actually received an information
message because the reception of information messages can not be acknowledged.

2However, the theoretical results presented in this section are quite general, as they can be easily
extended to different modulation schemes.
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where E is the energy of a transmitted signal with a time duration equal to T , fo is the

carrier frequency, L is the number of bits forming each coded packet, and di is equal to

+1 or −1 if the i-th bit of the coded packet is 1 or 0, respectively.

From (3.1), in the case of the CP-MNC method it is important to stress that the

amplitude of the transmitted signal is kept constant independently on the value of m.

Likewise, for what concerns the CR-MNC, the transmission rate is kept constant regard-

less of the value of m. In addition, let us assume that the channel fading is sufficiently

slow to make possible an exact estimation of the phase shift of the received signal at

each receiving end, and hence, an ideal coherent detection can be performed. According

to this, and whether CP-MNC or CR-MNC schemes are adopted, it is straightforward

to prove that the bit error probability, as a function of m, can be expressed as [50, 73]:

pu(m) =
1

2
erfc
(√

mγu

)
for u = 1, . . . ,M (3.2)

where γu is the instantaneous SNR related to the signal received by the u-th UE. Hence,

according to the assumption of a Rayleigh fading, it follows that γu has a chi-square

probability distribution with two degrees of freedom and a mean value equal to γu. In

addition, we have that the packet error probability (for u = 1, . . . ,M) for a L bits long

coded packet can be expressed as1

Pu(m) = 1−
∫ ∞

0

1

γu

[
1− pu(m)

]L
e
− 1
γu
γu dγu. (3.3)

As for the combinatorial model used to derive (2.47) and reported in Section 2.2.4.2,

let us define from [40] the probability that the u-th UE recovers the information message

after that the BS has transmitted N coded packets (where N ≥ K):

Fu(m,N) =
N∑
j=K

(
N

j

)
PN−j
u (m)

[
1− Pu(m)

]j
g(j) (3.4)

where

g(j) =
K−1∏
h=0

[
1− 1

qj−h

]
(3.5)

which is the probability that at least K coded packets are linearly independent over j

(for j ≥ K) [40].

Hence, for a MG formed by M UEs, the probability that all the UEs of the MG

are able to recover the overall information message upon the transmission of N coded

1Note that the analysis outlined here is quite general and it includes also the case of different γu
values among the UEs of the MG.
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packets results to be

Φ(m,N) =
M∏
u=1

Fu(m,N). (3.6)

Moreover, as for the parametric function Φ̂N̂(m) = Φ(m,N)
∣∣∣
N=N̂

(for N̂ ≥ K), it is

a monotonically non-decreasing function. It is straightforward to note that the afore-

mentioned statement holds because of the reasons below: (i) from (3.6) we have that

Φ̂m̂(N) is the product of the parametric functions Fu(m,N)
∣∣∣
N=N̂

(for u = 1, . . . ,M)

which clearly are nonnegative nondecreasing functions1, (ii) since the product of nonde-

creasing functions is nondecreasing too, the parametric function Φ̂N̂(m) is nonnegative

nondecreasing as well.

Let us consider the CP-MNC strategy, we have that mLE and mLT is the energy

associated to the transmission of a single coded packet and its transmission time, re-

spectively. On the other hand, in the case of CR-MNC the transmission time duration

of a coded packet does not change, hence, it is equal to LT . In addition, in this case

the energy cost associated to the transmission of a coded packet results to be equal

to mLE. Hence, for both the considered approaches, we have that the overall trans-

mission energy cost, i.e., the overall energy associated to the transmission of N coded

packets, is

ε(m,N) = mLEN (3.7)

while the delivery delay, i.e., the overall time needed to transmit N coded packets, is

δ(m,N) =

{
mLT N for CP-MNC

LT N for CR-MNC.
(3.8)

From above, it is straightforward to note that the case of m = 1 is related to the RLNC

scheme [67] (where both the transmission rate and power are kept constant).

3.1.1.1 CP-MNC Model

Let us focus on the CP-MNC strategy. In this Section, we propose an analytical pro-

cedure which aims at optimizing the CP-MNC approach. The optimization procedure

aims at deriving the optimum values of the transmission rate (i.e., the optimum value

of m) and N in order to minimize the overall transmission energy cost and delivery

delay, if compared with the RLNC scheme (where m is always equal to 1). In particu-

lar, from (3.7) and (3.8) it is worth noting that the goal is achieved by minimizing the

1Due to the fact that the probability that the u-th UE recovers the overall information message
can not decrease as the packet error probability decreases. In particular, it is straightforward to note
that Pu(m) is a non-decreasing function.
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object function given by mN . Hence, our optimization problem can be formulated as

follows1:

(O1) min
m,N

mN (3.9)

subject to Φ(m,N) ≥ Φ̂ (3.10)

1 ≤ m ≤ m̂max, m ∈ R+ (3.11)

K ≤ N ≤ N̂max, N ∈ N (3.12)

where Φ̂ is the target delivery probability of an information message, i.e., the probability

that all the UEs of the MG recover the whole information message. In addition, due to

the fact that the transmission time duration and energy associated to an information

message are function of m and N , it follows that both m and N have practical upper

bounds which dependent on the specific QoS constraints. These practical limits are

modelled by constraints (3.11) and (3.12) where we assumed that the parameter m̂max

(for m̂max ≥ 1) and N̂max (for N̂max > K) is the upper bound for m and N , respectively.

Due to the fact that O1 is a mixed integer non-linear optimization problem, it can

not be solved with reasonable computing efforts. For this reason, the rest of this section

shows how to transform O1 into an equivalent problem that can be efficiently solved.

In particular, in the rest of the section we show that O1 can be solved by a two-steps

procedure which can be summarised as follows: (i) for each N ∈ [K, N̂max] the optimum

value of m is found, then (ii) the pair (m,N) which minimises the objective (3.9) is

selected.

Let us consider the problem O1, it can be rewritten as

(O2) min
N

N min
m

m (3.13)

subject to m ∈ SN (3.14)

where the set SN is defined as SN
.
=
{
m ∈ R+

∣∣∣ 1 ≤ m ≤ m̂max ∧ Φ̂N(m) ≥ Φ̂
}

. The

problem O2 is a nested optimization model because it consists of two subproblems. In

particular, for N = N∗ the innermost problem is

(I1) min
m

m (3.15)

subject to m ∈ SN∗ . (3.16)

In addition, let S be the feasible set of O1, of course, the relation SN∗ ⊆ S holds. In

1In this section we refer with R+ and N to the set of real positive and natural numbers, respectively.
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particular, due to the fact that Φ̂N∗(m) is a monotonically non-decreasing function, the

solution of I1 is the smallest value of m (for m ≥ 1) such that the relation Φ(m,N∗) ≥ Φ̂

holds. As a consequence, the problem O2 can be solved by the two-steps procedure

below:

i For each N = K, . . . , N̂max find mK ,mK+1, . . . ,mN̂max
which are the solutions to

the problem I1 for N∗ = K,K + 1, . . . , N̂max.

ii The solution of O2 (i.e., the optimal (m,N) pair) is the pair (mi, i), for i = K,K +

1, . . . , N̂max, minimizing the objective function (3.9).

3.1.1.2 CR-MNC Model

Let us consider the CR-MNC approach. In this case the value of m has a direct impact

on the power associated to the transmission of each coded packet. Hence, also in this

case the value of m has a practical upper bound (which is m̂max) depending on the

system in use. In addition, we remark that we assumed m ≥ 1.

Due to the fact that also the CR-MNC method aims at delivering each information

message in such a way that it can be received by the considered MG at least with a

certain delivery probability Φ̂, the optimization of the pair (m,N) takes places over the

same kind of feasible set associated to O1. However, in this case we decided to minimize

the overall transmission energy cost, i.e., we decided to minimize the overall power cost

associated to the transmission of each information message. Hence, from (3.7), it is

straightforward to note that, also in this case the model O1 can be efficiently use to

achieve the aforementioned goals. Hence, the optimum pair (m,N) can be found by

the two-steps procedure proposed in Section 3.1.1.1. Finally, in Section 3.1.2 we show

that not only the overall transmission energy cost is minimized but also the delivery

delay is significantly reduced if compared to the RLNC alternative.

Finally, from (3.7) and (3.8) it is straightforward to note that the overall transmis-

sion energy cost and delivery delay can not be jointly minimized. In particular, if only

the delivery delay is minimized, the value of m will trivially be equal to m̂max, i.e., the

power associated to the transmission of each coded packet is maximized.

3.1.2 Numerical Results

The performance of both CP-MNC and CR-MNC strategies optimized as proposed in

the previous section are hereafter evaluated. We investigate the system performance

in terms of the normalized overall transmission energy cost and delivery delay, defined

as ε(m,N)/(K LE) and δ(m,N)/(K LT ), respectively. From (3.7) and (3.8) we have
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that, in the case of CP-MNC, the normalized overall transmission energy cost and

delivery delay are equal.

In addition, we compare the MNC-based strategies to an RLNC approach where

the value of N has been optimized by the flowing model (which is based on O1):

(O3) min
N

N (3.17)

subject to Φ(m,N)
∣∣∣
m=1
≥ Φ̂ (3.18)

K ≤ N ≤ N̂max, N ∈ N. (3.19)

It is worth noting that in the case of RLNC, the transmission time duration, energy

and power associated to each coded packet never change (i.e., the value of m is always

equal to 1).

The scenarios herein considered refer to a MG composed by a variable number of

UEs (namely, M ∈ [2, 128]). We assumed a finite field size equal to 28 for all the NC-

based coding/decoding operations and a message length of K = 20 information packets.

Two different packet lengths (L = 20 bytes and L = 40 bytes) have been considered.

Finally, regardless of the considered MNC-based strategy, parameters m̂max and N̂max

have been set equal to 10 and 50K, respectively.

Figure 3.1a and Figure 3.1b show, for M = 20, the values of ε(m,N)/(K LE)

and δ(m,N)/(K LT ) as a function of γw which is the average SNR value of the UE

experiencing the worst propagation conditions. In this scenario each UE is associated to

an average SNR γu ∈ [0, 10] dB (for u = 1, . . . ,M). The figures show the performance

metrics for two different values of the target delivery probability, namely Φ̂ = 0.8 and

Φ̂ = 0.9.

As for the normalized overall transmission energy cost, Figure 3.1a clearly shows a

maximum performance gain of at least three-fold for both the proposed CP-MNC and

CR-MNC methods if compared to the optimized RLNC scheme. On the other hand,

Figure 3.1b shows that the proposed MNC-based strategies outperform the optimized

RLNC scheme in terms of the normalized delivery delay. In particular, it is worth

noting that in this case the maximum normalized delivery delay which characterises

the CP-MNC and CR-MNC methods is at least three-times and eight-times smaller

than that associated to the optimized RLNC, respectively.

Even though the CR-MNC method outperforms the CP-MNC alternative in terms

of the delivery delay, this result is achieved at the cost of an increase of the transmis-

sion power. However, as the overall power consumption at the BS side increases, the

interference to other UEs or networks (which operates on the same frequency band)
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Figure 3.1: Normalized overall transmission energy cost and delivery delay vs. average
SNR of the UE experiencing the worst propagation conditions.
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Figure 3.2: Normalized overall transmission energy cost vs. number of UEs.

augments. Of course, if the transmission power cost is minimized, also the impact of

the interference on the overall system performance can be significantly reduced.

On the other hand, Figure 3.2 compares the performance of the considered strategies

as a function of M . The figure refers to a network scenario where all the UEs are

charactered by the same average SNR per symbol which is 1 dB. Figure 3.2 shows that

the normalized overall transmission energy cost associated to the MNC-based strategies

is up to three-times smaller than that associated to the optimized RLNC alternative.

Finally, the proposed MNC-based strategies minimise the overall transmission en-

ergy cost and significantly reduce the delivery delay in comparison to the RLNC alter-
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native. In particular, a performance gain of at most three-fold in overall transmission

energy cost and delivery delay is achieved by the CP-MNC method if compared to the

optimized RLNC alternative. For what concerns the CR-MNC method, its maximum

overall transmission energy cost and delivery delay are respectively at least three-times

and eight-times smaller than those of the optimized RLNC.

3.2 General Allocation Model for Layered Video

Broadcasting

In the rest of the section we focus on the video service delivery over 3GPP LTE-A

networks. In particular, we address the challenge of optimizing the radio resource

allocation process in eMBMS networks so that users, according to their propagation

conditions, can receive video streams at the maximum achievable service level in a

given cell.

Video content delivery over 4G mobile cellular networks, namely LTE and LTE-A,

is estimated to grow exponentially due to the surge in demand for bandwidth-intensive

applications based on video streaming [1].

This section deals with a SC-eMBMS deployment, where the eNB delivers broadcast

video services to all UEs that belong to one cell. In particular, the main goal of the

section is to define an efficient resource allocation strategy suitable for scalable video

broadcasting. We consider video flows encoded by using the H.264/SVC [2] codec

which provides video streams formed by multiple video layers, namely, the base layer

and several enhancement layers. The base layer provides basic reconstruction quality

which is gradually improved by decoding subsequent layers [3].

One of the key points of resource allocation strategies for PtM communications

is the possibility of exploiting the user heterogeneity (in terms of propagation condi-

tions) to maximize the level of satisfaction of each user. Multi-rate Transmission (MrT)

schemes promise to overcome this problem by: (i) splitting the set of users targeted

by the delivered PtM service into subsets, and (ii) differentiating the service delivery

into subflows (one per subset) which are optimized according to the propagation con-

ditions of each subset [74, 75]. Even though MrT schemes can better exploit the user

heterogeneity, usually they assume that UEs provide feedback to the transmitting node

reporting their propagation conditions [74, 11, 76] or positioning information [75]. In

addition, these schemes do not address the resource allocation problem by taking into

account the tight constraints imposed by 3GPP on the scheduling and structure of

LTE radio frames containing eMBMS subframes (Chapter 13 [4]). Finally, it is worth
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noting that, even though there are allocation strategies which aim to minimize the av-

erage/instantaneous user dissatisfaction [74, 11], none proposes a resource allocation

framework ensuring a predefined service level to a certain group of users.

Reliable packet-loss resilient multimedia service broadcasting via eMBMS has been

considered a challenging problem [77]. In particular, 3GPP has foreseen the adoption

of AL-FEC scheme based on Raptor Codes to improve reliability of broadcast and mul-

ticast eMBMS communications [63]. However, a major concern about AL-FEC coding

strategies is that they lead to a large communication delay [78]. In order to overcome

that issue, link-level NC-based strategies have been recently proposed as a valuable and

affordable (from the computational point of view) alternative to fountain code-based

AL-FEC schemes [72, 78]. To this end, this section draws inspiration from [72] where

authors propose to modify the standard LTE MAC by adding a coding sublayer, called

MAC-Random linear NC (MAC-RNC), atop of that. In particular, it provides improved

resilience to packet loss of delivered services by using RNC.

This section enhances the work presented in [72] by extending the MAC-RNC design

to deliver H.264/SVC video streams as eMBMS broadcast traffic flows. In addition, the

authors of [72] investigated the performance of the MAC-RNC-based delivery strategy

by comparing it with 3GPP-standardized HARQ strategies. However, they did not try

to optimize the system design under investigation. To this end, this section aims at

jointly optimizing the MCS, the transmission rate and the NC scheme used to efficiently

deliver each H.264/SVC video layer to heterogeneous set of user groups. We would like

to highlight that unlike other published work ([74, 75, 11, 76]), the provided allocation

strategy: (i) belongs to the MrT family, (ii) does not require any feedback from the

UEs, and (iii) ensures that each service level is successfully received with a certain

probability by the corresponding user group.

The section is organized as follows. Section 3.2.1 provides the necessary theoretical

background on RNC and the H.264/SVC video compression standard. Section 3.2.2

describes the extension to the MAC layer we considered and the theoretical framework

used to evaluate the service level of a H.264/SVC video service transmission. Moreover,

Section 3.2.2 describes the proposed optimal resource allocation model. Numerical

results are presented in Section 3.2.4.

3.2.1 H.264/SVC Broadcasting over LTE-A

Unlike traditional video compression standards, H.264/SVC (Annex G, [2]) defines pro-

cedures which encode a raw video bitstream into different video layers. In this section,

by QoS we assume the received video quality in terms of the number of reconstructed
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video layers. In particular, if a UE successfully receives the first l video layers, it actives

a certain QoS profile; the perceived QoS level improves as l increases.

Modern 4G networks allow the eNB to broadcast (or multicast) data streams to

target UEs at different MCSs, based on the users’ channel conditions and their terminal

capabilities. This means that users placed at different distances from the eNB would

experience different QoS levels, and classical single-layer video encoding schemes may

fail to deliver video services to users outside a specific coverage area in a given cell.

For this reason, in this section we use the H.264/SVC that presents a suitable solution

for video service delivery with distinct levels of video quality (e.g., time-, frequency-

resolution, etc.), where users in worse channel conditions (i.e., close to the cell edge)

would still be able to recover the video streams at the base layer quality, while UEs at a

closer distance to the eNB can decode all the video layers (both base and enhancement

layers).

In this section, we measure the video quality experienced at target users by means of

the decoded video bitrate and the Peak Signal-to-Noise Ratio (PSNR) metrics. While

the former indicates the maximum bitrate obtained at the output of the H.264/SVC

decoder, the PSNR metric measures the quality of the decoded video at the application-

layer [3].

3.2.2 System Model

Consider an H.264/SVC video stream which is delivered by an eNB as an SC-eMBMS

flow to all the UEs in a cell. Moreover, assume that the service is composed by the

layer set {v0, v1, . . . , vL}, where v0 and {v1, . . . , vL} are base video layer and the L− 1

enhancement layers, respectively.

Figure 3.3 shows the LTE protocol stack, proposed in [72], which we refer to. As-

suming that each video layer is associated to an independent IP packet stream, the

figure shows the stream composed of L video layers that enters the communication

stack at the PDCP layer. The PDCP PDUs are concatenated/segmented in the RLC

layer and then forwarded to the MAC layer [4]. Due to the fact that the MAC-RNC sub-

layer should improve the reliability of data broadcasting, we have that: (i) the stream

of RLC PDUs related to a video layer is segmented into information symbols of LS

bits, (ii) information symbols are grouped into sets of Kl items, namely {p1, . . . , pKl}
the so-called information messages [67], and (iii) according to the RNC principle, the

MAC-RNC sublayer produces a stream of coded symbols {c1, c2, . . .} from each infor-

mation message. Finally, the i-th coded symbol is obtained as a linear combination of

information symbols (forming an information message), i.e., ci =
∑Kl

j=1 gj ·pj where each
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Figure 3.3: LTE/LTE-A protocol stack and (a part of) radio frame (for L = 2).

coding coefficient gj is taken at random from an uniform distribution over a finite field

of size q (see Section 2.2.1.1). A stream of coded symbols associated to one information

message is mapped (by the standard LTE MAC layer) in Nl MAC PDUs. Finally, each

MAC PDU is mapped on one TB and broadcast to the UEs. Hence, depending on the

TB sizes and MCS in use1, a TB holds a variable number of coded symbols. A UE

recovers the delivered information message as soon as Kl linearly independent coded

symbols are collected2.

Table 3.1 lists the MCSs which are eligible for the TB transmission. In particular,

in this section we considered the set of MCSs which corresponds to CQI values ml that

UEs feedback for Point-to-Point (PtP) services indicating their channel conditions [4].

Finally, we assume that all the TBs holding data associated to the l-th video layer are

delivered by means of the same MCS ml.

The transmission time duration of a TB is fixed and equal to Transmission Time

Interval (TTI), namely 1 ms [4]. In addition, a TB may consist of NRBP,l RBPs3.

Figure 3.3 shows the time-frequency structure of an LTE radio frame. It consists of

10 subframes (each of them has a transmission time duration of one TTI). The figure

reports the (maximum) number of subframes that can be used for delivering eMBMS

1The LTE standard imposes that one MAC PDU has to be mapped in one TB. Hence, the MAC
PDU size depends on the MCS used for the TB transmission. Furthermore, the standard MAC layer
selects the MCS used in the TB transmission [4].

2For the sake of simplicity we assume that coding coefficients are known at the receiving UEs.
However, it is worth noting that this assumption can be easily relaxed as suggested in [45].

3Which is a fixed frequency-time unit of resource allocation in LTE that consists of 12 OFDM
subcarriers (180 kHz × 1 ms) [4].
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Table 3.1: Number of coded symbols per RBP vs. ml (for LS = 32 bits) [72].

ml Mod.
Code

n(ml) ml Mod.
Code

n(ml)Rate Rate

1-3 No Tx - - 10 64QAM 0.45 10
4 QPSK 0.3 2 11 64QAM 0.55 12
5 QPSK 0.44 3 12 64QAM 0.65 14
6 QPSK 0.59 4 13 64QAM 0.75 16
7 16QAM 0.37 5 14 64QAM 0.85 18
8 16QAM 0.48 6 15 64QAM 0.93 20
9 16QAM 0.6 8

data flows, namely 6 out of 10 subframes per radio frame. Finally, as shown in the

figure, we assume that during each eMBMS-capable subframe, the eNB can deliver (at

most) one TB per video layer. Hence, a subframe holding eMBMS data, can deliver (at

most) L+ 1 TBs (namely, one base and L enhancement layers).

The TBs that hold coded symbols associated to the l-th video layer are delivered

using the MCS ml and contain n(ml) coded symbols per RBP. Hence, the total number

of coded symbols that is to be placed in one TB is C(ml, NRBP,l) = n(ml) · NRBP,l.

Table 3.1 lists all the possible values of n(·), for LS = 32 bits [72].

Moreover, define the l-th Multicast Area (MA) MAl as the fraction of the cell area

where all the UEs can recover the first l + 1 video layers with a certain probability.

In this section we assume that the relation m0 ≤ m1 ≤ . . . ≤ mL holds, i.e., the MCS

index of the l-th video layer cannot be smaller than that of the (l − 1)-th one. Let

us approximate MAl (for l = 0, . . . , L) as a circle of radius rl equal to the maximum

distance between the eNB and the farthest point where the TBLER Peml (characterizing

the reception of TBs associated to the l-th video layer) is not greater than 10%1. For

these reasons, we have that rl ≤ rl−1. Assuming that UE distribution follows a Poisson

point process of average density λ, the average (rounded up) number of UEs belonging

to MAl is given by Ul =
⌈
λπ r2

l

⌉
[79]. Finally, it is useful to define the average number

of UEs in the cell as Ue =
⌈
λπ r2

e

⌉
, where re is the maximum distance between the eNB

and the cell-edge.

One H.264/SVC encoded video stream is divided into Group of Pictures (GoPs) that

consist of gGoP video frames. The video frame rate is given by fGoP frames-per-second

(fps), and the time duration of a GoP is tGoP = gGoP/fGoP. Moreover, we can express

the time duration of a GoP in terms of the number of TTIs as: dGoP =
⌊
tGoP/tTTI

⌋
,

1In LTE/LTE-A systems, transmitting by using a given MCS is permitted as long as the TBLER
experienced by a UE is equal to or smaller than 10−1 [4]. We assume that rl can be estimated: (i)
during the network deployment phase or (ii) by the eNB itself which uses CQI values reported by UEs
for standard Point-to-Point services.
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where a tTTI is the LTE TTI (namely, 1 ms).

Since the decoding process of a H.264/SVC video takes place on a per-GoP basis, we

define an RNC information message of the l-th SVC video layer as the set of information

symbols forming the l-th layer of one GoP. Hence, Kl is defined as Kl =
⌈
(Rl ·tGoP)/LS

⌉
,

where Rl is the bitrate of the l-th SVC video layer1.

In this section, the term QoS refers to the received video quality in terms of the

number of reconstructed video layers. For an information message of the l-th video

layer, the probability that a UE recovers it (i.e., the probability that a UE collects at

least Kl linearly independent coded symbols) after Nl TB transmissions as a function

of Nl, ml and NRBP,l can be expressed as follows (as presented in (3.4) and (3.5)):

PUE,l
.
= PUE(Nl,ml, NRBP,l)

=

Nl∑
t=χl

[(
Nl

t

)
PeNl−tml

[
1− Peml

]t Kl−1∏
i=0

(
1− 1

qt C(ml,NRBP,l)−i

)]
(3.20)

where χl =
⌈
Kl

/
C(ml, NRBP,l)

⌉
is the minimum (integer) number of TB transmissions

needed to deliver at least Kl coded symbols. Let us assume that TB reception errors

occur as statistically independent events among UEs of the same MA. From (3.20), the

probability that Ul UEs recover the l-th SVC video layer of a GoP is PUl
UE,l. Hence, as

presented in (3.6), the probability that Ul UEs belonging to MAl recover the basic and

the first l enhancement video layers is (at least) equal to

PMA,l
.
= PMA

(
N0, . . . , Nl,m0, . . . ,ml, NRBP,0, . . . , NRBP,l

)
=

l∏
i=0

PUi
UE,i. (3.21)

3.2.3 Rate-Optimized and Coverage-Aware Model

The novel resource allocation strategy we propose, which we call “Multi-rate Network

Coding” (MrNC), is embedded into the MAC-RNC sublayer (see Figure 3.3) imple-

mented at the eNB side and does not rely on any information related to UEs in the

given cell. The proposed strategy aims at allocating resources in order to ensure that

heterogenous QoS levels are achieved for different MAs. That goal is achieved, for each

video layer, by jointly optimizing (i) TB sizes (in terms of number of RBP per TB)

NRBP,l (ii) the number of TB transmissions Nl, and (iii) selecting the MCS ml of each

MA. Hence, the proposed strategy aims at optimizing the number of transmitted coded

1It is worth mentioning that if the value of Kl is too large for the Gaussian Elimination decoder
in use, the complexity of the decoding process can be reduced by referring to the systematic version
of RNC [72].
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symbols per video layer. Finally, the MrNC model can be stated as follows:

(MrNC) min
m0,...mL
N0,...,NL

NRBP,0,...,NRBP,L

L∑
l=0

Nl NRBP,l (3.22)

subject to
Ul
Ue
≥ UTH,l l = 0, . . . , L (3.23)

ml < ml+1 l = 0, . . . , L− 1 (3.24)

PMA,l ≥ P̂TH,l l = 0, . . . , L (3.25)

NRBP,l ≤ N̂TH l = 0, . . . , L (3.26)

Nl ≤
⌊
TTIe dGoP

⌋
l = 0, . . . , L (3.27)

where the constraint (3.23) ensures that the average number of UEs per MA is not

smaller than a certain value, and (3.24) avoids the overlapping of any two MAs, since

it would be pointless to deliver the same video service characterized by two different

QoS levels across the same fraction of the cell area. Using the constraint (3.25), the

v0, . . . , vl video layers will be recovered with a probability which is at least equal to

P̂TH,l. It is worth mentioning that the value of PMA,l in (3.25) has been evaluated by

setting Peml = 10−1 (i.e., we set Peml to the greatest TBLER value) in (3.20) and (3.21).

As for (3.26), it ensures that the frequency span of each TB can not be greater than

N̂TH. TB transmissions associated to each video layer have to be completed (at most)

in dGoP subframes. Due to the fact that only 60% (TTIe = 0.6) of subframes per-

frame are eMBMS-capable, the constraint (3.27) states that Nl cannot be greater than

0.6·dGoP. The objective function (3.22) will minimize the overall radio resource footprint

associated with the transmission of all the video layers of a GoP conditioned that the

QoS constraints as defined in (3.23)-(3.27) are met. In particular, (3.22) minimizes the

overall number of RBPs (Nl ·NRBP,l) associated with each video layer.

Unfortunately, the MrNC model is a nonlinear integer optimization problem which

is hard to solve in closed form. Hence, the rest of this section addresses these issues

by proposing an heuristic strategy to solve the MrNC model: the Heuristic MrNC

(HMrNC) strategy. HMrNC comprises three sequential steps which aim to: (i) optimize

the MCSs of each MA, (ii) choose the TB sizes, and (iii) optimize the number of TB

transmissions.

Considering Procedure 3.1, it is in charge of the first step, namely: (i) it iterates

over the MCS values (starting from 15, see Table 3.1), and (ii) for each video layer, it

identifies the smallest MA such that the constraints (3.23) and (3.24) hold. For the sec-

ond step of HMrNC, we decided to set the values of NRBP,l equal to the maximum value
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Procedure 3.1 Definition of the MAs.
t← 15
for l = 0→ L do

repeat
ml ← t
t← t− 1

until Ul
/
Ue ≥ UTH,l or t < 4

end for

(N̂TH) and then optimize the number of TBs transmitted to each MA1 (the third step).

Let us define2 P̃MA,l(N0, . . . , Nl)
.
= PMA

(
N0, . . . , Nl

∣∣m0, . . . ,ml, NRBP,0, . . . , NRBP,l

)
.

Since m0, . . . ,mL and NRBP,0, . . . , NRBP,L are given, the MrNC problem can be re-

stated as follows

(H1) min
N0,...NL

L∑
l=0

Nl (3.28)

subject to Nl ≤
⌊
TTIe dGoP

⌋
l = 0, . . . , L (3.29)

P̃MA,l(N0, . . . , Nl) ≥ P̂TH,l l = 0, . . . , L. (3.30)

Once again, H1 is a noninteger and nonlinear problem but in this case it can be efficiently

solved. To this end, considering P̃MA,l(N0, . . . , Nl), from (3.21) we can see that the

probability value cannot decrease when Nl increases and the remaining variables are

kept constant. Furthermore, let N∗l (for l = 0, . . . , L) be the smallest value of Nl

such that P̃MA,l(N0, . . . , Nl) ≥ P̂TH,l (for l = 0, . . . , L) holds. Likewise, the approach

presented in [80] and starting from l = 0, the value of N∗l can be efficiently found

by testing all the possible values of Nl from χl until P̃MA,l(N0, . . . , Nl) ≥ P̂TH,l holds.

In particular, Proposition 3.1 proves that the objective function (3.28) is minimized

by
{
N∗0 , . . . , N

∗
L

}
. Finally, Procedure 3.2 proposes a possible implementation of the

proposed strategy.

Proposition 3.1. Considering
{
N∗0 , . . . , N

∗
L

}
, it is an optimum solution of H1.

Proof. The probability P̃MA,l(N0, . . . , Nl) is a nondecreasing function with respect to

the variable Nl (for any l = 0, . . . , L). Considering Procedure 3.2, it starts from

l = 0 and minimizes the functions P̃MA,l(N0), . . . , P̃MA,l(N0, . . . , Nl)
∣∣
N0=N∗

0 ,...,Nl−1=N∗
l−1

,

etc. Let us assume the existence of another solution
{
N ′0, . . . , N

′
L

}
of H1 such that

1This method will tend to reduce the transmission time duration of a GoP rather than optimize
the TB sizes. In addition, the latter aspect can be indirectly addressed during the service deployment
phase by choosing the value of N̂TH.

2In this section we define f(x
∣∣t0, . . . , tw) as the parametric function where x is the variable and

t0, . . . , tw are parameters.
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Procedure 3.2 Minimization of the time duration of the process.

for l = 0→ L do
N∗l ← χl
while P̃MA,l(N0, . . . , Nl)

∣∣
N0=N∗

0 ,...,Nl−1=N∗
l−1

< P̂TH,l do

N∗l ← N∗l + 1
end while

end for

∑L
l=0 N

′
l <

∑L
l=0 N

∗
l . Hence, there is at least one term N ′l such that N ′l < N∗l . However,

because of the definition of N∗l , the constraint (3.30) would not hold. This completes

the proof by reductio ad absurdum.

As for Procedure 3.2, it can solve H1 in a finite number of steps. In particular,

we can note that N∗l belongs to the interval I =
[
χl,
⌊
TTIe · dGoP

⌋]
. During one

iteration, the procedure tests just one value of I. Hence, N∗l is found in a number of

iterations such that are less than or equal to the number of items in I. For this reason,

Procedure 3.2 returns (at most) after Q iterations such that:

Q ≤
L∑
l=0

(⌊
TTIe dGoP

⌋
− χl + 1

)
=
(

1 +
⌊
TTIe dGoP

⌋)(
L+ 1

)
−

L∑
l=0

χl. (3.31)

3.2.4 Numerical Results

This section investigates the system performance in terms of the resource load index η

defined as:

η =
1⌊

TTIe dGoP

⌋
N̂TH

L∑
l=0

NRBP,lNl (3.32)

where
∑L

l=0 NRBP,l ·Nl represents the radio resource footprint of the allocation strategy.

In addition, we consider the probabilities1 PMA,l that a reference group of 10 UEs can

recover each service QoS level (see (3.21)) and hence the maximum achievable PSNR

defined as:

p = max
l=0,...,L

{
p̂l PMA,l

}
(3.33)

where p̂l is the PSNR obtained after recovery of the video layers v0, . . . , vl.

We provide performance comparisons between the proposed allocation strategies

based on the MrNC model and HMrNC heuristic approach. We also consider the

allocation model proposed in [11] named hereafter as the Video Rate Allocation (VRA)

1In this this sections we referred to Peml
(for l = 0, . . . , L) values computed by averaging TBLER

values obtained by 103 iterations of the datalink simulation framework presented in [72].
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Table 3.2: Simulation parameters considered.

Paramter Value
Inter-Site-Distance (ISD) 500 m

System Bandwidth 20 MHz
Transmission Scheme SISO

Duplexing Mode FDD
Carrier Frequency 2.0 GHz

Transmission Power 40 W per-sector
eNB and UE Antenna Gains see Table A.2.1.1-2 [81]

Pathloss and Penetration Loss see Table A.2.1.1.5-1 [81]

P̂TH,l 0.9, for l ∈ 0, . . . , L

N̂TH [4, . . . , 12] RBPs

Stream A [11]
{r̂0, . . . , r̂2} [kbps] {117.1, 402.5, 1506.3}
{p̂0, . . . , p̂2} [dB] {29.94, 34.78, 40.73}
{UTH,0, . . . , UTH,2} {0.4, 0.5, 0.9}

Stream B
{r̂0, . . . , r̂3} [kbps] {160.0, 300.0, 560.0, 1150.0}
{p̂0, . . . , p̂3} [dB] {29.45, 32.30, 34.52, 38.41}
{UTH,0, . . . , UTH,3} {0.4, 0.55, 0.75, 0.9}

Stream A, B
gGoP 16 frames
fGoP 30 fps
q 28

strategy which tries to maximize the sum of the video quality perceived by each UE.

In order to make a fair comparison among the MrNC, HMrNC and VRA methods, we

impose that the eNB cannot skip the transmission of any video layer, hence, we restate

the VRA objective function as follows1:

max
m0,...,mL

L∑
l=0

Ul p̂l. (3.34)

Furthermore, we compare both MrNC and HMrNC with a MrT-based strategy [6]. For

the latter strategy, we draw inspiration from [76], where UEs are split into multiple

MGs, the transmission rate used to deliver data to one MG is constrained to the UE

experiencing the worst propagation conditions (in the MG). This means that the MrT

optimization problem can be restated in the following equivalent form:

arg min
ml∈[4,...,15]

{
ml

∣∣∣Ul
Ue
≥ UTH,l

}
for any l = 0, . . . , L. (3.35)

It tries to deliver the l-th video layer over a MAl by using the minimum MCS such

1The original formulation of the VRA model aims at jointly optimizing the set of delivered layers
and MCSs used in the transmissions [11].
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Figure 3.4: Resource load index as a function of N̂TH.

that the relation (3.23) holds (namely, a LCG-based approach is used within a MG).

Due to the fact that neither the VRA, nor MrT strategies explicitly address the TB

sizing problem, we assume that each TB consists of N̂TH RBPs. In addition, both the

VRA and LGC strategies assume that UEs can report to the eNB CQI feedback but

one of the key points of MrNC and HMrNC methods is that they do not rely on any UE

feedback. Hence, for the sake of comparison, we assume that the actual number of UEs

which on average report the CQI value ml is equal to Ul. Finally, in the case of both

the VRA- and MrT-based video delivery, transmissions take place through the standard

LTE MAC layer (namely, a communication stack without the MAC-RNC sublayer).

We consider a network of 19 macro-cell eNBs, each managing three hexagonal sec-

tors. eNBs are organized in two concentric circles centred on the target eNB. In addition,

TBLER values experienced by a UE, as a function of a given MCS and distance from

the eNB, are estimated by the finite-state Markov model approach presented in [82] and

extended in [72]. Finally, Table 3.2 summarizes both the main simulation parameters

and the couple of H.264/SVC Foreman video streams [83] which we considered.

Results reported in this section will clearly show that the proposed MrNC and

HMrNC strategies provide resource allocation solutions which meet predefined service

constraints (see (3.23) and (3.25)) with the minimum resource footprint (see (3.22)).

Furthermore, in spite of the fact that the radio resource footprint of VRA and MrT

(required to achieve their respective goals) is smaller than those associated to the MrNC

and HMrNC strategies, they cannot ensure that a predefined video QoS levels is main-

tained over the targeted fractions of the cell area.

In Figure 3.4, we compare the value of η, as a function of N̂TH, characterizing

all the considered resource allocation strategies, in the case of video stream A and

B. From (3.32), we have that the overall number of RBPs used to deliver one stream
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Figure 3.5: Video delivery probabilities and maximum PSNR of the stream A.

increases as the value of η rises. Considering the figure, the performance gap between the

MrNC and HMrNC models is negligible (at most it is less than 0.01). It is worth noting

that it is caused by the fact that, in the latter case, both the MCS selection and TB

sizing processes are separate from the optimization of the number of TB transmissions.

On the other hand, both the VRA and MrT strategies deliver the video stream A (B)

by using a proportion of bandwidth resources which is smaller than that associated to

the MrNC strategy (and the HMrNC as well) of at most 1.63 and 1.19 (2.18 and 1.20)

times, respectively.

In spite of the larger radio resource footprint for MrNC and HMrNC, it is worth

noting that the proposed models can deliver a service with the desired QoS level over

a given fraction of the cell-area. Considering the stream A, Figure 3.5 compares (for

N̂TH = 6) the PMA,l values of each QoS level and p as a function of the distance of the

considered reference group from the eNB. For each MA, the figures report the value of

rl (the dashed lines). Unlike MrNC and HMrNC, both the VRA and MrT strategies

cannot deliver the service over the desired fractions of the cell-area. For instance, MA0

(MA2) defined by the VRA and MrT strategies extends up to a distance which is 81.9m

and 14.9m (20.2m for both the strategies) smaller than the (minimum) required one,
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Figure 3.6: Video delivery probabilities and maximum PSNR of the stream B.

respectively. Finally, Figure 3.6 shows (for N̂TH = 6) similar behaviour for video stream

B. In this case we note that MA0 (MA3) provided by the VRA and MrT allocation

strategies spans up to a distance that negatively diverges from the (minimum) required

one of 71.9m and 15.9m (20.2m for both the strategies), respectively.

Considering Figures 3.5 and 3.6, the HMrNC allocation model can deliver one video

stream, at a certain QoS level, over a MA which can be slightly greater than that defined

by the MrNC strategy. In particular, this effect can be noted in Figure 3.5 (Figure 3.6)

by considering the delivery probability values associated to the reception of v0 and v1

(v0, v1 and v2). That is not surprising because the resource allocation solution derived

by the HMrNC model is: (i) a feasible solution of MrNC problem but (ii) suboptimal in

terms of the number of RBPs used to deliver all the video layers. As a consequence, the

HMrNC model provides a resource allocation that leads to deliver more coded symbols

per-video layer than the MrNC alternative. Hence, the PMA,l (see (3.21)) values can be

slightly greater than those associated to the MrNC model.

Finally, we propose an optimal (the MrNC model) and heuristic resource allocation

strategy (the HMrNC procedure) suitable for SC-eMBMS broadcast communications

delivered through the MAC-RNC sublayer. We demonstrated that HMrNC can effi-
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ciently derive feasible solutions of MrNC with a reduced computational load. Unlike

VRA and MrT strategies, both MrNC and HMrNC ensure the desired service coverage.

In particular, the VRA and MrT strategies can deliver the considered video streams at

the maximum (minimum) QoS level over MAs which, at least, are 22% (50% and 12%,

respectively) smaller than the desired ones.
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Unacknowledged Power Allocation

Strategies

In this chapter, we propose an energy efficient resource allocation model for delay

sensitive service delivery by means of the RLNC approach. The proposed optimization

model aims at minimizing the overall transmission energy by jointly optimizing the

transmission power and the RLNC scheme. We considered a scenario where several

multicast services are delivered to a set of users. The service delivery is constrained both

in terms of delivery delay and recovery probability. We develop an efficient heuristic

strategy which provides, in a finite number of steps, a good quality feasible resource

allocation such that service constraints are met and the overall transmission energy is

significantly reduced.

4.1 Power Allocation for Heterogeneous Broadcast-

ing

This section deals with a communication system where a BS delivers multiple down-

link PtM data flows to a group of UEs belonging to the same MG. Each flow has to

be recovered by the MG with a certain probability and within a given time interval.

Namely, a data flow has to be successfully recovered by all the UEs of the MG with a

certain probability and within a certain time. Several error control strategies for PtM

communications have been proposed [22]. However, all the proposals are not capable

of controlling the QoS level on a per-MG basis (in terms of recovery probability and

delivery delay), as one PtM service should be delivered providing to all the UEs of the

MG the desired QoS level. Because of the complexity of managing multicast/broadcast

services through a retransmission process, ARQ or HARQ schemes can be efficiently
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replaced with a NC-based principle [22].

In addition to PtM services reliability issues, there is another factor of paramount

importance for both the network provider and environment, namely the energy footprint

of service delivery. In fact, modern wireless communication networks are responsible for

more than the 0.2% of the total carbon emissions [61]. In spite of the huge amount of

resource allocation strategies aiming at minimizing the transmission power [14], a little

attention has been paid to reduce the transmission energy of PtM communications.

This section proposes an efficient resource allocation model, which aims at jointly

optimizing both the BS transmission power and the NC scheme used to deliver each

PtM flow. In this way, the proposed optimization model can minimize the overall

transmission energy. Finally, we propose an efficient resource allocation procedure

which can efficiently find (in a finite number of steps) a good quality feasible solutions

of the proposed optimization model.

The rest of the chapter is organized as follows. Section 4.2 describes the consid-

ered system model and provides the necessary background. The proposed optimization

strategy and heuristic procedure are presented in Section 4.3. Section 4.4 inspects the

performance of the proposed allocation model.

4.2 System Model

Let us assume that the BS delivers S different multicast services to M UEs forming

a MG. In addition, let us consider that all the services are delivered at the same time

through statistically independent communication channels. To this end, without loss

of generality, we assume that: (i) communications are organized in frames, and (ii) the

delivered services are multiplexed by means of the OFDMA scheme.

Considering the s-th service, it can be modelled as a stream of information mes-

sages. Each message Es consists of Ks information elements (for instance, generic net-

work Packet Data Units). For each delivered service, the BS linearly combines all the

information elements belonging to the same information message to produce a stream

of Ns ≥ Ks (for s ∈ {1, . . . , S}) coded elements (see Section 2.2.1.1). The BS transmits,

at the same time, to the MG S streams of coded elements (one stream per-delivered

service). We assume that a coded element is always L bits long, regardless of the ser-

vice. Finally, it is worth noting that each service is delivered according to the RLNC

principle (see Section 2.2.1.1).

We assume a framed communication system where a frame is a frequency × time

structure of fixed size elements (see Figure 4.1). One frame element spans one subchan-

nel and time slot in the frequency and time domain, respectively. A frame location can
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Figure 4.1: Example of the considered framed communication delivery for S = 3.

hold just one coded element and a service is conveyed to the MG by frame elements

belonging to the same subchannel.

Let Ps be the power associated to the transmission of one coded element belonging

to the s-th service. We assume that the transmission power of the BS during a time

slot cannot be greater than the overall power budget P̂ , i.e.,
∑S

s=1 Ps ≤ P̂ . In addition,

let us define the term P
.
= P̂ /S. The value of Ps can be expressed as Ps = msP , where

the term ms belongs to the set1 R+. Assuming that the impact of the interferences

on the considered system is negligible, it is straightforward to note that the following

relation holds

S∑
t=1

Ps ≤ P̂ ⇔
S∑
s=1

ms P ≤ S P ⇔
S∑
s=1

ms ≤ S. (4.1)

Assuming that communications adopt the BPSK2, the transmission energy of one coded

element is ms ·E ·L, where E is the energy associated to the transmission of one bit. In

the rest of the section, we refer to the the energy associated to the transmission of Ns

coded elements, normalized to L · E, namely ms ·Ns. Finally, the overall transmission

energy (normalized to L · E) needed to deliver the coded elements associated to one

information message of service s is
∑S

s=1 msNs.

Let γu and γu be the instantaneous and the average SNR associated to a coded

element reception by the u-th UE of the MG, respectively. Considering the s-th service,

it is straightforward to note that, relations γu = ms γo,u and γu = ms γo,u hold, where

γo,u and γo,u are the instantaneous and the average SNR (associated to the reception

of a coded element) experienced by the u-th UE for ms = 1, respectively. Assuming

that communications occurs over a Rayleigh communication channel, the element error

probability Pu(ms) can be expressed as reported in (3.3).

1In this section we refer with R+ and N to the set of real positive and natural numbers, respectively.
2The theoretical derivation we propose is quite general and can be extended to other modulation

schemes.
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4.3 Optimization Model

Let us consider the delivered set of services. The resource allocation we propose aims

at optimizing each couple (ms, Ns) such that: (i) the overall transmission energy of the

BS is minimized, and (ii) each information message can be recovered within a certain

time by any UE of the MG with a probability which is not smaller than Φ.

Before going into details of the proposed optimization strategy, it is worth defining

the probability that one UE recovers an information message (belonging to the s-th

service), as a function of ms and Ns (as presented in (3.4) and (3.5)):

Fu(ms, Ns) =
Ns∑
j=Ks

(
Ns

j

)
PNs−j
u (ms)

[
1− Pu(ms)

]j
g(j) (4.2)

where g(j) =
Ks−1∏
h=0

[
1 − 1

qj−h

]
is the probability that at least Ks over j (for j ≥ Ks)

coded elements are linearly independent. As presented in (3.6), all the UEs of the MG

can recover an information message with a probability which is

Φ(ms, Ns) =
M∏
u=1

Fu(ms, Ns). (4.3)

As a result, the proposed green resource allocation model can be expressed as follows:

(M1) min
m1,...,mS
N1,...,NS

S∑
s=1

msNs (4.4)

subject to Φ(ms, Ns) ≥ Φ̂, s ∈ {1, . . . , S} (4.5)

S∑
s=1

ms ≤ S (4.6)

Ks ≤ Ns ≤ N̂s, s ∈ {1, . . . , S} (4.7)

ms ∈ R+, Ns ∈ N, s ∈ {1, . . . , S} (4.8)

where the constraint (4.5) ensures that the MG recovers services with a probability

which is not smaller than Φ̂, we assume that Φ̂ is constant for all the transmitted

services. From (4.1), the constraint (4.6) ensures that the instantaneous transmission

power of the BS is not greater than P̂ . The constraint (4.7) imposes an upper-bound to

the coded element transmissions for each service (i.e., the value of Ns cannot be greater

than N̂s). Hence, the constraint (4.7) upper-bounds the transmission time duration of

each service. Finally, it is straightforward to note that M1 is a mixed integer non-linear
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optimization problem. Hence, it is hard to efficiently solve it. To this end, we show

that Procedure 4.1 can find a feasible solution to M1 in a finite number of steps.

Considering M1, let us relax the constraint (4.6). In the rest of the section, the

resulting optimization model is called Unbounded Transmission Power (UTP) model.

It is worth noting that the UTP allocation model is introduced for the sake of analysis.

It represents an “unsafe” allocation model due to the fact that it aims at minimizing

the overall transmission energy but it could provide a resource allocation solution which

requires an overall transmission power that exceeds P̂ .

The UTP model is equivalent to a set of S independent problems, where the s-th

problem can be expressed as follows

(M2) min
ms,Ns

msNs (4.9)

subject to Φ(ms, Ns) ≥ Φ̂ (4.10)

Ks ≤ Ns ≤ N̂s (4.11)

ms ∈ R+, Ns ∈ N. (4.12)

It has been already shown that the solution of M2 can be efficiently found as follows [80]:

(i) For any value of Ns (where Ks ≤ Ns ≤ N̂s) find that value of ms such that

Φ(ms, Ns) is equal to Φ̂.

(ii) Choose the (ms, Ns) pair, among the computed ones, which minimises the objec-

tive function (4.9).

In addition, it can be proved that [80]: (i) the solution of M2 can be efficiently derived

in a finite number of steps and belongs to the set Ls
.
=
{

(ms, Ns) ∈ R+ × N
∣∣∣ Ks ≤

Ns ≤ N̂s ∧ Φ(ms, Ns) = Φ̂
}

which is the frontier of the feasible set of M2,1 and (ii)

Φ(ms, Ns) is a monotonically increasing function both with respect to ms and Ns. In

particular, if the relation Φ(m,n) ≥ Φ̂ holds, then Φ(m′, n+1) ≥ Φ̂ holds as well, where

m′ ≤ m.

Let us consider also a special case of UTP, where the transmission power Ps is fixed

to P (for any s ∈ {1, . . . , S}), i.e., ms = 1 for each PtM service. In the rest of the

section, the aforementioned model is called Constant Transmission Power (CTP) model

1For the sake of simplicity and with a little of notation abuse, in this section Ls(Ns) represents
the value of ms such that (ms, Ns) ∈ Ls.
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and can be expressed as follows:

(CTP) min
N1,...,NS

S∑
s=1

Ns (4.13)

subject to Φ(1, Ns) ≥ Φ̂, s ∈ {1, . . . , S} (4.14)

Ks ≤ Ns ≤ N̂s, s ∈ {1, . . . , S} (4.15)

Ns ∈ N, s ∈ {1, . . . , S}. (4.16)

It is worth proving the proposition below.

Proposition 4.1. Let (m∗s, N
∗
s ), (m′s, N

′
s) and (m′′s , N

′′
s ), for any s ∈ {1, . . . , S}, be the

optimum solutions of M1, UTP and CTP models, respectively. The following relation

holds
S∑
s=1

m′sN
′
s ≤

S∑
s=1

m∗sN
∗
s ≤

S∑
s=1

m′′s N
′′
s . (4.17)

Proof. The solution of CTP meets the constraints of M1 (i.e., any solution to CTP is, at

least, a suboptimal solution of M1). In addition, the M1 model represents a spacial case

of the UTP model. Hence, the proof follows from the fact that M′′ ⊆M∗ ⊆
⋃S
s=1 M

′
s,

where M∗, M′s and M′′ are the feasible sets of models M1, UTP and CTP, respectively.

For these reasons, if
∑S

s=1m
′
s ≤ S then the optimum solution of M1 can be found

by solving M2 for any service s ∈ {1, . . . , S}. On the other hand, Proposition 4.1

states that the optimal solution of M1 cannot be worse than that of CTP. In the case

of
∑S

s=1m
′
s > S, it is still possible to find a good quality suboptimal solution of M1.

To this end, let (m∗∗s , N
∗∗
s ) (for s ∈ {1, . . . , S}) be the solution which is returned by

Procedure 4.1. In brief, the procedure comprises the following steps:

(i) (m∗∗1 , N
∗∗
1 ), . . . , (m∗∗S , N

∗∗
S ) are set equal to the solutions of M2 for any s ∈

{1, . . . , S}, if the constraint (4.6) is met then the procedure gives (at least) a

feasible solution to M1.

(ii) Otherwise, the while-loop body [lines 2-18] aims at computing the product õs =

(N∗∗s + 1)Ls(N
∗∗
s + 1) for any service ([lines 3-10]) and finding the service index

associated to the smallest õs − os value ([line 15]).

(iii) The while-loop iterates until the constraint (4.6) is met [line 2] or, if, at any

loop step, there is no m̃s such that (m̃s, N
∗∗
s + 1) ∈ Ls [lines 11-14]. Considering

the latter case, the procedure selects the optimal solution of CTP as suboptimal

solution of M1, see [line 13].

90



4.3 Optimization Model

Procedure 4.1 Heuristic Solution of M1

1: Initialize m∗∗s ← m′s, N
∗∗
s ← N ′s and os ← m′s ·N ′s, for s ∈ {1, . . . , S}

2: while
S∑
s=1

m∗∗s > S do

3: for s← 1, . . . , S do
4: if N∗∗s + 1 ≤ N̂s then
5: m̃s ← Ls(N

∗∗
s + 1)

6: õs ← m̃s · (N∗∗s + 1)
7: else
8: õs ←∞
9: end if

10: end for
11: if õs =∞, ∀s ∈ {1, . . . , S} then
12: m∗∗s ← 1 and N∗∗s ← N ′′s , ∀s ∈ {1, . . . , S}
13: return (m∗∗s , N

∗∗
s ), ∀s ∈ {1, . . . , S}

14: end if
15: i← arg min{õ1 − o1, . . . , õS − oS}
16: N∗∗i ← N∗∗i + 1
17: m∗∗i ← m̃i

18: end while

19: if
S∑
s=1

m∗∗s N
∗∗
s >

S∑
s=1

N ′′s then

20: m∗∗s ← 1 and N∗∗s ← N ′′s , ∀s ∈ {1, . . . , S}
21: end if
22: return (m∗∗s , N

∗∗
s ), ∀s ∈ {1, . . . , S}

(iv) Finally, an if-then statement [lines 19-21] checks the quality of the solution found

by the procedure. Considering the condition reported at [line 19], if it holds then,

also in this case, the procedure chooses the optimal solution of CTP as suboptimal

solution of M1.

It is straightforward to note that (m∗∗1 , N
∗∗
1 ), . . . , (m∗∗S , N

∗∗
S ) is (at least) a feasible so-

lution of M1. In addition, Procedure 4.1 returns a solutions that cannot be worse than

that of the CTP model.

Unfortunately, Procedure 4.1 cannot always derive the optimal solution of M1. In

fact, it is possible to find some instances of M1 such that (m∗∗1 , N
∗∗
1 ), . . . , (m∗∗S , N

∗∗
S )

is a suboptimal solution. However, in all the problem instances we considered, the

gap between the optimal solution and the heuristic one (namely, the solution derived

by Procedure 4.1) is negligible. Finally, due to the fact that values of N∗∗s (for each

s ∈ {1, . . . , S}) meet the constraint (4.7), hence, Procedure 4.1 returns in a finite

number of steps which is equal to or less than
∑S

s=1(N̂s −Ks).
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Figure 4.2: Normalized overall transmission energy vs. minimum value of γo,h.

4.4 Numerical Results

This section compares the performance of the proposed resource allocation model (pre-

sented in M1) to the UTP and CTP alternatives. For what concerns the allocation

strategy based on M1, this section shows performance results obtained by solving the

problem M1 by means of Procedure 4.1.

In this section, we consider a scenario where the BS delivers S = 3 PtM services.

Numerical results have been derived by considering a variable number of UEs belonging

to the MG, namely M ∈ [2, 128] UEs. The value of γo,u spans the interval [0, 20]

dB. Each PtM service is delivered according to the RLNC scheme which refers to a

finite field of size q = 28. In addition, we consider two different information element

lengths, namely L is equal to 32 or 48 bytes. The number of elements associated to an

information message of each service is: K1 = 20, K2 = 30 and K3 = 40. We assume that

N̂s = 20 ·Ns (for s ∈ {1, . . . , S}). Finally, each information message has to be recovered

by the MG (at least) with a probability Φ̂ equal to 0.8 or 0.9. Let L be the minimum

value of L among the considered ones (i.e., L = 32 bytes). The performance evaluation

refers to the normalized overall transmission energy associated to the delivery of one

information message per-PtM service, defined as ε
.
= L

L

∑S
s=1 msNs. Finally, we also

consider the maximum value of ms, namely m̃
.
= max{m1, . . . ,mS}, as performance

index.

Let uh be the h-th UE of the MG that experiences the worst propagation condi-

tions, i.e., γo,h = min{γo,1, . . . , γo,M}. Figures 4.2 and 4.3 show the overall transmission

energy and the m̃ value as a function of γo,h (for Φ̂ = 0.9), respectively. The figures

compare both the UTP and CTP strategies to the proposed one, for different informa-
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Figure 4.3: Maximum value of ms among S PtM services vs. minimum value of γo,h.

2 4 6 8 10 12 14 16 18 20
10

1

10
2

10
3

Average SNR value (dB)

N
o

rm
al

iz
ed

 O
v

er
al

l 
T

ra
n

sm
is

si
o

n
 E

n
er

g
y

 

 

UTP (L = 32B)
CTP (L = 32B)
M1 (L = 32B)
UTP (L = 48B)
CTP (L = 48B)
M1 (L = 48B)

Figure 4.4: Normalized overall transmission energy vs. number of UEs M .

tion element lengths. We can note that the values of ε and m̃ of the solution derived

by Procedure 4.1 overlap those associated to the UTP strategy, for γo,h > 6 dB. In

that case (i) Procedure 4.1 can derive the optimal solution of M1, (ii) the problem

M1 is equivalent to the UTP one, and (iii) the performance of M1 (and hence of UTP

strategy) diverges from that of the CTP strategy. For instance, if γo,h = 20 dB, values

of ε and m̃ associated to the M1 strategy are ∼8 and ∼22 times smaller than those of

the CTP one, respectively.

Figure 4.4 compares the performance (in terms of ε) of all the considered allocation

strategies as a function of the number of UEs M , for γo,h = 10 dB, L = 48 bytes and

different values of Φ̂. It is worth noting that ε values associated to the UTP and M1

strategies overlap, regardless of the value of M . Also in this case, the proposed strategy
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(as well as the UTP one) outperforms the CTP approach.
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Conclusions

In this thesis, we investigated the resource allocation issues of PtM communication

flows. In particular, we focused on fully reliable and delay sensitive services. Once

more, we would like to remark that the considered service classes are of paramount

importance in modern communication networks based on LTE and LTE-A.

This thesis deals with three main topics: (i) definition of resource allocation models

suitable for error control strategies based on the HARQ-CC and NC approaches (suit-

able for fully reliable service delivery), (ii) development of allocation models for delay

sensitive services, and (iii) definition of standard agnostic power allocation models for

delay sensitive service delivery.

Chapter 2 described the MHARQ-SC approach where multiple copies of the same

packet are consecutively transmitted. Of course, each receiving node combines all the

received copies as stated by the SC principle. In this way, reliability of fully reliable

communications is improved. The chapter proposed an efficient optimization frame-

work which can be used to select the optimum amount of copies minimizing either the

transmission energy or the delivery delay. We would like to remark that performance

of the MHARQ-SC scheme has been efficiently inspected by means of the AMC the-

ory. The performance of MHARQ-SC solution has been validated under AWGN and

frequency-non-selective slow Rayleigh faded propagation conditions. The MHARQ-SC

approach has been compared to multiple alternatives, such as: the classical HARQ-SC

and optimized HARQ-SC schemes. Finally, the effectiveness of the proposed solution

has been clearly shown.

Furthermore, Chapter 2 proposes an error control strategy based on the NC and

SC principle (namely, the SDI-NC principle). Unlike MHARQ-SC, SDI-NC proposes to

transmit each coded packet such that the duration of each symbol is increased by a factor

m. The goal of the proposed optimization is to find the value of m which minimises

the mean delivery delay and energy consumption (needed to successfully recover an
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information packet). Performance of SDI-NC has been inspected both in a broadcast

and butterfly network models. In particular, we focused on AWGN and slow faded

propagation conditions. Results clearly show that the SDI-NC scheme significantly

outperforms the existing RLNC-based alternative. Finally, at the end of the chapter,

we extended the SDI-NC approach to satellite and SC-eMBMS networks.

In Chapter 3, we proposed a completely unacknowledged version of the MNC strat-

egy suitable for delay sensitive service delivery. In particular, we developed a couple of

multicast communication strategies which aim at improving system performance both

in terms of transmission energy and delivery delay associated to the delivery of the

whole data flow. These goals are achieved in two ways: (i) by optimally selecting the

transmission data rate while the power associated to transmission of each packet is kept

constant (the CP-MNC), or (ii) by optimizing the transmission power cost and keeping

constant the transmission rate (the CR-MNC). Numerical results clearly showed that

the proposed strategies minimise the overall transmission energy cost and significantly

reduce the delivery delay in comparison to the RLNC alternative.

Chapter 3 also focused on the video service delivery over LTE-A networks. In

particular, it addressed the challenge of optimizing the radio resource allocation process

in eMBMS networks so that users, according to their propagation conditions, can receive

video streams at the maximum achievable service level in a given cell. The main goal of

the proposed optimization framework (namely, the MrNC model) is to define an efficient

resource allocation strategy suitable for scalable video broadcasting (encoded by using

the H.264/SVC codec). To this end, we proposed a model that can jointly optimize

MCS, transmission rate and NC scheme used to efficiently deliver each H.264/SVC

video layer to heterogeneous set of user groups. Finally, we demonstrated that the

MrNC model we proposed can efficiently deliver layered video services over SC-eMBMS

networks.

In Chapter 4, we proposed a energy efficient resource allocation model for delay sen-

sitive service delivery based on the RLNC approach. Numerical results clearly showed

that the proposed optimization model can minimize the overall transmission energy of

heterogeneous PtM data flows by jointly optimizing the transmission power and the

NC scheme.
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PEP of SC Communications

This Appendix provides the expression of the Packet Error Probability (PEP) PB(m)

(experienced by a generic node of a MG) used in the theoretical derivation of Section 2.1.

In this appendix we considered both the AWGN and frequency non-selective slowly-

faded Rayleigh multipath fading channels. In addition, we refer with γ (AWGN regime)

and γ̄ (frequency non-selective, slow Rayleigh multipath fading regime) to the SNR and

mean SNR characterizing the reception of a generic node, respectively.

A.1 AWGN Propagation Conditions

Let us assume that the receiving node performs an ideal coherent detection. The

decision variable for each of the L bits forming a j-th received copy (of the same

packet) is [50]:

zi(j) = di
√
Eb + ni(j) i = 1, . . . , L (A.1)

where di is a random variable which can be equal to −1 or +1 with the same probability.

If the i-th bit is 0 then di = −1, di = 1 otherwise. The term Eb is the energy associated

to each transmitted bit and, ni(j) is a random variable which follows a Gaussian dis-

tribution with zero mean and a variance equal to N0/2 (where N0 is the one-side power

spectral density of the white Gaussian noise affecting the communication link).

According to the SC principle [84], we can define the following decision variable:

Zi =
m∑
j=1

zi(j) = mdi
√
Eb + ni i = 1, . . . , L (A.2)

where the term ni results to be a Gaussian random variable with zero mean and a

variance equal to mN0/2.

According to the standard decision criterion for equiprobable symbols, we have that
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the bit error probability related to the BPSK modulation is [50]:

Pe(m) = Q
(√

2mγ
)

(A.3)

where γ = Eb/N0. Hence, under the assumption of an ideal detecting code, the error

probability related to an information packet (as function of m) is:

PB(m) = 1−
[
1− Pe(m)

]L
. (A.4)

A.2 Slow Rayleigh Fading Conditions

Let us consider a frequency non-selective, slow Rayleigh multipath faded channel. More-

over, let us assume that all the channel parameters are known at the AP side. Hence,

according to the optimal maximal ratio combiner, the overall decision variable for the

i-th bit received by the generic node can be defined as follows [84]:

Z̃i =
√
Eb

m∑
j=1

α2
j +

m∑
j=1

αj nj i = 1, . . . , L (A.5)

where nj (for j = 1, . . . ,m) are m iid Gaussian random variables with zero mean

and a variance equal to N0/2. Terms αj (for j = 1, . . . ,m) are m iid Rayleigh random

variables and constant for all the bits forming each copy of the same information packet.

In addition, they are independent on a packet copy basis. Hence, the decision variable

Z̃i follows a Gaussian distribution. Moreover, the bit error probability of the BPSK

modulation is:

Pe(m) = Q
(√

2ψ(m)
)

(A.6)

where

ψ(m)=̇
Eb
N0

m∑
j=1

α2
j (A.7)

From [50], γ(m) is a χ2-distributed random variable with 2m degrees of freedom. Hence,

we have:

p
(
ψ(m)

)
=

1

(m− 1)! γ̄m
γ(m)m−1e−

γ(m)
γ̄ (A.8)

where

γ̄=̇
Eb
N0

E(α2
i ) (A.9)
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E(α2
i ) is the mean value of αi. For these reasons, the packet error probability of an

information packet can be expressed as

PB(m) = 1−
∫ ∞

0

[
1−Q

(√
2 γ(m)

)]L
p
(
γ(m)

)
dγ(m) . (A.10)
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Introduction to the AMC Modeling

This appendix aims at giving the necessarily theoretical background on the AMC by

considering a classical telecommunication problem: the evaluation of the resequencing

delay in a TDD system which adopts the Selective Repeat Automatic Repeat-reQuest

(SR-ARQ) error control strategy. The reported analytical derivation can be used as an

instant primer on the performance model considered in Section 2.1.1.

B.1 Resequencial Delay Model

We refer here to a wireless communication system characterized by an access scheme

where the time is arranged in frames. In particular, we assume that each frame can

hold up to k information packets. We assume that the transmitting nodes always has

information packets to transmit to the receiving end.

Considering a stream of packets, each of them is labelled by a Sequence Number (SN)

and they are progressively transmitted according to their own SNs (starting from the

lower one). In addition, we assumed that: (i) the acknowledgement process occurs over

a fully reliable feedback channel and, (ii) packet transmissions are always acknowledged

within the end of a transmitted frame.

For the sake of the analysis, we assumed that packet errors occur as statically

independent events.

For any erroneously received packet a negative acknowledged message (NACK) is

sent to the transmitting node to request a packet retransmission (during the next frame).

In what follows, we will denote as Pe the packet error probability. Finally, we assume

that the capacity of the transmission buffer as well as the capacity of the resequencing

one is infinite.

As soon as a packet is correctly received, the following procedure is performed: (i)

the related SN is read, (ii) if there is at least one packet in the resequencing buffer with
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Figure B.1: State transition diagram.

a lower SN, it is stored in that buffer or, (iii) it is passed to the upper layers.

Therefore, we define the normalized resequencing delay as the time (expressed in

terms of number of frames) elapsed between the correct reception of a packet and

its delivery to the higher layers. Hence, the resequencing delay of the i-th information

packet is null if it is directly passed to the upper layers (i.e., when it is correctly received

and all the packets having a lower SN have been already passed to the upper layers).

In order to properly model the resequencing delay process of any correctly received

packet, we define the i-th state si of that process as follows:

Definition B.1. The state si is equal to the number of packets in the resequencing

buffer with a SN which is less than i.

On the basis of our assumptions, it is straightforward to note that the resequencing

delay process can be modelled as a Markov chain with states {s0, . . . , sk−1}. In partic-

ular, it is worth noting that the aforementioned model is an Absorbing Markov Chain

(AMC) [24] because: (i) the state s0 once entered, cannot be left (i.e., s0 is the final

state or absorbing state of the process) and, (ii) any state si (for i = 1, . . . , k−1) results

to be a transient state (i.e., once left it is never reached again).

In order to complete the definition of the AMC model we have to derive the state

transition probabilities. Let us consider a packet which is correctly received and stored

into the resequencing buffer in the i-position, i.e., the resequencing process associated

to it starts from the state si. The transition probability pi,j from the state si to sj can
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be defined as follows:

pi,j =


(

i

i− j

)
P j
e

(
1− Pe

)i−j
if i ≥ j

0 otherwise.

(B.1)

We remark that a packet is dequeued from the resequencing buffer only if all the

packets previously transmitted (before the considered one) have been correctly received.

The state transition diagram associated to the adopted AMC model is sketched in

Figure B.1.

B.2 Absorbing Markov Chain Analysis

This Section provides the analysis of the resequencing delay model defined in Sec-

tion B.1. In particular, by means of the AMC theory [24], we will define the fundamen-

tal matrix N associated to the AMC of interest. Finally, from the expression of N and

the initial state probabilities of the resequencing delay process we derive the expression

of the mean resequencing delay of a correctly received packet.

Let us start our analysis by providing the definition of the fundamental matrix N.

From (B.1), the corresponding k × k transition matrix P of the AMC process can be

expressed as

P
.
=



1 0 · · · 0

1− Pe Pe · · · 0
...

...
...

...(
1− Pe

)k−2
(
k − 2

k − 4

)
P 2
e

(
1− Pe

)k−4

· · · 0(
1− Pe

)k−1
(
k − 1

k − 3

)
P 2
e

(
1− Pe

)k−3

· · · P k−1
e


, (B.2)

From (B.2) we note that the matrix P is expressed in its canonical form [24]. This

means that P can be given as

P
.
=

[
1 0

R Q

]
, (B.3)

where Q is a (k − 1) × (k − 1) transition matrix which models the behaviour of the
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AMC process as long as it involves only transient states; in particular, it is defined as:

Q
.
=



Pe · · · 0
...

...
...(

k − 2

k − 4

)
P 2
e

(
1− Pe

)k−4

· · · 0(
k − 1

k − 3

)
P 2
e

(
1− Pe

)k−3

· · · P k−1
e


. (B.4)

The term R is a k−1 dimensional column vector which lists the transition probabilities

originating from a transient state and directed to the absorbing one. It is given by

R
.
=



1− Pe
...(

1− Pe
)k−2

(
1− Pe

)k−1


. (B.5)

Finally, 0 is a k − 1 dimensional row vector composed by null elements.

In order to derive the average resequencing delay, it is worth referring to the Propo-

sition B.1 which is a classical result in the AMC theory [24] (see Cap. III).

Proposition B.1. Let I be the (k− 1)× (k− 1) identity matrix. Since the matrix Ql

tends to O (which is the k − 1× k − 1 zero matrix) as l goes to infinity1, the following

relation holds

N
.
=
∞∑
l=0

Ql =
[
I−Q

]−1

. (B.6)

Proof. From (B.4) the (i, j)-th entry of the matrix Ql is the probability of entering the

j-th transient state coming from the i-th one after that l frames have been transmitted.

It can be proved that the following relation hold [24]:

I−Ql =
(
I−Q

)
·
(
I + Q + . . .+ Ql−1

)
(B.7)

Due to the fact that each element of the matrix Ql tends to zero as l tends to infinity,

(I−Ql) tends to I. Hence, we have that the determinant of (I−Ql) is different than

zero for sufficiently large values of l. For this reason we have that: (i) the determinant

of the rightmost member of (B.7) is different than zero and, (ii) the determinant of

1In the section with Ql we will refer to the l-th power of the matrix Q.
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(I−Q) is non-null. Thus, (B.7) can be rewritten as follows:

(
I−Q

)−1

·
(
I−Ql

)
= I + Q + . . .+ Ql−1 =

∞∑
l=0

Ql (B.8)

Since the term Ql tends to O as l tends to infinity, the relation (B.6) holds.

In addition, the following proposition holds:

Proposition B.2. Let N(i, j) be a generic element of N. N(i, j) results to be the

mean value of the total number of times that the process, started in the state si, enters

the state sj (where both si and sj are transient). Moreover, the mean number of

consecutive frames γ(i) after that the process (started from the state si) enters into the

absorbing state s0 (i.e., the mean value of the resequencing delay for a given packet)

can be expressed as follows

γ(i) =
k−1∑
j=1

N(i, j), i = 1, . . . , k − 1 . (B.9)

Proof. Let Yi,j be the random variable representing the total number of frame trans-

missions needed by the process, started from si, to reach the state sj (where both si

and sj are transient). Hence, the random variable defining the total number of frame

transmissions needed by the process, started from the state si, to reach the absorbing

state s0 is

Ti
.
=

k−1∑
j=1

Yi,j, i = 1, . . . , k − 1. (B.10)

In addition, the mean value of Ti can be expressed as follows

γ(i)
.
=

k−1∑
j=1

E[Yi,j], i = 1, . . . , k − 1. (B.11)

Let Y
(i,j)
n be a random variable which is 1 if the process, started from si reaches sj after

n frame transmissions and 0, otherwise. It is straightforward to note that the following

relation holds

Yi,j =
∞∑
n=0

Y (i,j)
n , i, j = 1, . . . , k − 1. (B.12)

In addition from (B.4), the mean value of Y
(i,j)
n results to be

E[Y (i,j)
n ] = Qn(i, j), i, j = 1, . . . , k − 1 (B.13)
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where Qn(i, j) is the (i, j)-th item of the matrix Qn. Hence, from (B.12) and (B.13) we

have that

E[Yi,j] =
∞∑
n=0

E[Y (i,j)
n ] =

∞∑
n=0

Qn(i, j), i, j = 1, . . . , k − 1. (B.14)

From (B.6) and (B.14), we have that the relation E[Yi,j] = N(i, j) holds. As a conse-

quence, the relation (B.11) can be rewritten as follows

γ(i) =
k−1∑
j=1

N(i, j), i = 1, . . . , k − 1. (B.15)

This completes the proof.

In order to define the mean value of the resequencing delay for any correctly re-

ceived packet, we assume that when a packet is delivered for the first time, it can be

transmitted into any of the k positions of the frame with a probability which is 1/k.

Hence, considering a packet (transmitted in the j-th position of the frame) which is

successfully received, it starts the resequencing process from the initial state si if and

only if i over j − 1 packets (transmitted before it within the current frame) have been

received with errors. Hence, the probability π(i, j) that a packet transmitted in the

j-th position of the frame enters into the resequencing buffer in the i-position (i.e., the

packet resequencing process starts from the si) is defined as

π(i, j)
.
=


(
j − 1

i

)
P i
e

(
1− Pe

)j−i−1

if i ≤ j

0 otherwise.

(B.16)

Moreover, from (B.16) we have that the probability that a packet starts its rese-

quencing process from one of the possible states si (for i = 0, . . . , k − 1) is given by

π(i)
.
=

k∑
j=1

1

k
π(i, j), i = 0, . . . , k − 1 . (B.17)

Let δ be the random variable representing the value of the resequencing delay of

a packet. It follows from (B.9) and (B.17) that the mean resequencing delay δ of a

successfully received packet is

δ
.
=

k−1∑
i=1

γ(i)π(i) . (B.18)

Finally, it is useful to define the Complementary Cumulative Density Function
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(CCDF), ψ(t), of the random variable δ namely, i.e., the probability that the rese-

quencing delay of a packet is greater than t (for any value of t which is integer and

greater than 1). Let pt be a row vector of k items where i-th element pt(i) is the

probability that the resequencing process of a packet is in the state si after t frame

transmissions. The vector pt can be expressed as follows

pt
.
=
[
pt(0), pt(1), . . . , pt(k − 1)

]
= π · Pt . (B.19)

where π is a k-dimensional row vector where the i-th component is equal to π(i) (for

i = 0, . . . , k − 1), given by (B.17).

From (B.19) the probability that a packet is passed to the higher layers after t frame

transmissions (for t ≥ 1) is the first component of the vector pt (namely, pt(0)). Hence,

the CCDF of the resequencing process is

ψ(t)
.
= 1 − pt(0), t ≥ 1 (B.20)
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Proofs of Proposition 2.1 and 2.2

C.1 Proof of Proposition 2.1

C.1.1 AWGN Propagation Conditions

Proof. Towards this end, we rewrite (2.37), for i = 1, . . . ,M , as:

d

dm̂

(
Γ̂i(m̂)

)
=

1− gi(m̂)− hi(m̂)

[1− gi(m̂)]L+1
, (C.1)

where

gi(m̂) := Q
(√

m̂γi

)
, (C.2)

hi(m̂) := L

√
γim̂

2π
e−

m̂γi
2 . (C.3)

Moreover, due to the fact that both gi(m̂) and hi(m̂) decrease, the following relation

holds:

d2

dm̂2

(
Γ̂i(m̂)

)
≥ 0⇔

[
− d

dm̂

(
gi(m̂)

)
− d

dm̂

(
hi(m̂)

)][
1− gi(m̂)

]
−(L+ 1)

[
1− gi(m̂)− hi(m̂)

] d

dm̂

(
gi(m̂)

)
≥ 0 . (C.4)

As a result, dΓ̂i(m̂)
dm̂

increases, for these reasons Γ̂i(m̂) is convex in R+/{0}. In addi-

tion, for all practical operative conditions (namely for L ≥ 8 bits and γi ≥ −1 dB) the

following relations hold:

d

dm̂

(
Γ̂i(m̂)

)∣∣∣
m̂=1

=
1−Q

(√
γi

)
− L

√
γi
2π
e−

γi
2

[1−Q
(√

γi
)
]L+1

< 0, (C.5)
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and

lim
m̂→∞

d

dm̂

(
Γ̂i(m̂)

)
> 0 . (C.6)

Thus, Γ̂i(m̂) has an unique minimum m̂o ≥ 1 [85].

C.1.2 Slow Fading Propagation Conditions

Proof. In the case of slow fading propagation conditions, let us consider the following

definitions:

li(m̂)
.
=

∫ ∞
0

[
1−Q(

√
m̂ γi)

]L
e
− 1
γi
γidγi , (C.7)

si(m̂)
.
=
L
√
m̂

2
√

2π

∫ ∞
0

√
γi

[
1−Q(

√
m̂ γi)

]L−1

e
− 2+m̂γi

2γi
γidγi . (C.8)

where li(m̂) : R+/{0} −→ R+ and si(m̂) : R+/{0} −→ R+ (for i = 1, 2, . . . ,M) are con-

tinuously differentiable in R+/{0}. The first and the second-order derivative of

Γ̂i(m̂) : R+/0 −→ R+ can be expressed by the following relations:

d

d m̂

(
Λ̂i

)
= γi

li(m̂)− si(m̂)

l2i (m̂)
, (C.9)

and

d2

d m̂2

(
Λ̂i

)
≥ 0⇔ 2

d

d m̂

(
li(m̂)

)
si(m̂)− li(m̂)

[
d

d m̂

(
li(m̂)

)
− d

d m̂

(
si(m̂)

)]
≥ 0 .(C.10)

Since (C.10) is verified in any operative conditions (namely for L ≥ 8 bits and

γi ≥ −1 dB), we have that d
d m̂

(
Λ̂i

)
increases. For these reasons, the Λ̂i(m̂) function is

convex in R+/{0} [58].

C.2 Proof of Proposition 2.2

C.2.1 Rician Propagation Conditions

Proof. Because of their definitions (see (2.61) and (2.62)), the functions w(m̂) and t(m̂)

are continuously differentiable in P. Moreover, the first-order derivative of Λ̂L2L(m̂),

can be expressed as follows:

d

d m̂

(
Λ̂L2L

)
=
w(m̂)− t(m̂)

w2(m̂)
. (C.11)
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C.2 Proof of Proposition 2.2

Let us consider the following parameters: L ≥ 8 bits, a mean SNR value γ ≥ 0 dB,

and a Rician factor V ≥ 1 dB. The relation d2

d m̂2

(
Λ̂L2L

)
≥ 0 holds. Hence, d

d m̂

(
Λ̂L2L

)
increases. For these reasons Λ̂L2L(m̂) is convex in P [58].
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[17] C. Khirallah, D. Vukobratović, and J. Thompson, “Bandwidth and Energy Effi-

ciency of Video Broadcasting Services over LTE/LTE-A,” in Proc. of IEEE WCNC

2013, Shanghai, China, CN, 2013.

[18] G. Papadopoulos, G. Koltsidas, and F.-N. Pavlidou, “Two hybrid ARQ algorithms

for reliable multicast communications in UMTS networks,” IEEE Commun. Lett.,

vol. 10, no. 4, pp. 260–262, Apr. 2006.

[19] J. Wang, S. Y. Park, D. Love, and M. Zoltowski, “Throughput Delay Tradeoff for

Wireless Multicast Using Hybrid-ARQ Protocols,” IEEE Trans. Commun., vol. 58,

no. 9, pp. 2741–2751, Sep. 2010.

[20] T.-Y. Lin, S.-K. Lee, H.-H. Tang, and M.-C. Lin, “An Adaptive Hybrid ARQ

Scheme with Constant Packet Lengths,” IEEE Trans. Commun., vol. 60, no. 10,

pp. 2829–2840, Oct. 2012.

[21] R. Fantacci, “Performance evaluation of efficient continuous ARQ protocols,” IEEE

Trans. Commun., vol. 38, no. 6, pp. 773–781, Jun. 1990.

114



Bibliography

[22] J. Kim, H. Jin, D. K. Sung, and R. Schober, “Optimization of Wireless Multi-

cast Systems Employing Hybrid-ARQ with Chase Combining,” IEEE Trans. Veh.

Technol., vol. 59, no. 7, pp. 3342–3355, Sep. 2010.

[23] D. Chase, “A Combined Coding and Modulation Approach for Communication

over Dispersive Channels,” IEEE Trans. Commun., vol. 21, no. 3, pp. 159–174,

Mar. 1973.

[24] J. Kemény and J. Snell, Finite Markov Chains, ser. University series in undergrad-

uate mathematics. Van Nostrand, 1960.

[25] N. El Heni, X. Lagrange, and P. Maule, “Optimization of link adaptation and

HARQ schemes for multicast in high speed cellular networks,” in Proc. of ISWCS

2009, Siena, Italy, IT, Sep. 2009, pp. 131–135.

[26] S. Le Digabel, “Algorithm 909: NOMAD: Nonlinear Optimization with the MADS

Algorithm,” ACM Trans. Math. Softw., vol. 37, no. 4, Feb. 2011.

[27] M. A. Abramson, C. Audet, G. Couture, J. J. E. Dennis, S. Le Di-

gabel, and C. Tribes, “The NOMAD project.” [Online]. Available:

http://www.gerad.ca/nomad

[28] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE

Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.
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