
A novel routing algorithm for mobile pervasive

computing

Romano Fantacci, Daniele Tarchi, and Andrea Tassi

Department of Electronics and Telecommunications

University of Florence

Firenze, Italy

Abstract—The interest towards real-time computing has lead
an even more interest in grid computing. While in the past
the implementation of grid computing has been done on high
performance computers, in the recent years there is an increasing
interest in the pervasive grid scenarios, where multiple devices
can be used for a distributed computing. The most challenging
idea is to use mobile devices connected among them with wireless
connections for setting up pervasive grid environments. In this
context, it is a crucial problem the optimization of the routing
algorithms among the processing nodes, in order to satisfy the
performance requirements of a distributed computing. Aim of
this paper is the design of specific routing algorithms for different
pervasive grid applications with a particular attention to time
sensitive scenarios.

I. INTRODUCTION

In the last years computing and communication fields has

been deeply developed in both research and industrial sides.

However, at this time, they are not truly integrated. A joint

integration of the two aspects allows a more efficient use of

computing power in distributed environment where a multitude

of small-medium sized devices are present, thus allowing

intensive processing also without dedicated infrastructures. On

one side the mobile computing offers the opportunity to have

a huge number of devices disseminated all over an area. On

the other side the Grid paradigm for cooperative and high-

performance enabling platforms is evolving to more dynamic

and pervasive applications. Historically these approaches have

been used for fixed computers connected by high speed

networks. The introduction of broadband wireless technologies

and the improvement in computational capabilities of portable

devices allows now to interconnect also mobile devices with

high speed structures and to use them for processing parts of

a distributed application [1].

An efficient integrated model, based on an innovative ap-

proach integrating a Pervasive Grid platform and an efficient

wireless communication network [2], is of crucial importance.

The goal of this integration is to allow a distributed computing

platform to operate on an integrated communication network

characterized by high heterogeneity, mobility and dynamism.

The reason of such integration is even more crucial for all

those applications that require a quick response to elaborate

complex models: this is the case of emergency forecasting

This work was supported in part by MIUR-FIRB Integrated System for
Emergency (InSyEme) under Grant RBIP063BPH.

where complex mathematical model require high-performance

computing to provide clients with prompt and best-effort

services.

The classical solution is to map forecasting models to

central processing centers, which support high-performance

architectures (e.g. cluster) and which are geographically far

from the emergency area. This classical solution is not always

feasible or the best one (in terms of performance) because

of hardware or software failures in communication and com-

putation infrastructures and/or high communication overheads

between far sites. A solution is to map high-performance

complex forecasting models to all available processing and

communication resources, which are even heterogeneous and

with limited computational capabilities, but geographically

near the disaster area.

The integration of an efficient pervasive computing infras-

tructure with telecommunication aspects can be seen from

different point of views. Among several aspects, one of the

most important issues to be solved in such environments is to

correctly find and route the processing structure on the best

node: aim of the routing algorithm is to find that best node and

the best path to it. Aim of this paper is propose novel routing

strategies with a specific focus on the distributed environment

we are facing.

II. PERVASIVE GRID COMPUTING

Grid computing consists of a number of resources inter-

connected through a network, to be shared amongst its users.

Large computing endeavors can be distributed over this net-

work to these resources, and scheduled to fulfill requirements

with the highest possible efficiency. Grids, as opposed to

cluster computing efforts, consist of geographically distributed

heterogeneous resources, interconnected through a variety of

local area/wide area networks.

The Grid paradigm aims to enable the access, selection and

aggregation of a variety of distributed and heterogeneous re-

sources and services. However, though notable advancements

in recent years have been achieved, Grid technology is not

yet able to supply the needed software technology with the

application requirements. A complex mapping problem must

be solved dynamically each time the state of the Pervasive

Grid changes in such a way that it affects the application

performance.

.

.

.

W

W

W

E C

(a) Task Farm

.

.

.

W

W

W

S G

(b) Data Parallel

Fig. 1. Considered grid schemes.

In this paper we assume that Pervasive Grid applications are

developed in the ASSISTANT programming model [3], which

features the following characteristics:

• application components can be provided in multiple

versions, based on different sequential algorithms and

parallelization techniques;

• versions are dynamically selected to face with context

events. The programmer can define context events to

be sensed and the adaptivity actions to be performed

whenever such events are dynamically verified.

Here, we consider the case in which we have provided two

operations: the first one is based on a task parallel structure,

while the second one on a data parallel scheme. Broadly, these

parallelism schemes feature different performance characteris-

tics:

• Task Farm: the input tasks are scheduled (task emitter E)

w.r.t. several replicated workers (W) according to a load

balancing strategy, each worker executing the sequential

algorithm. An output stream of results is produced, as a

collection to the collector (C) of worker results (see Fig.

1a).

• Data Parallel: each input task is scattered by the com-

ponent S onto several replicated workers (W), each one

performing the sequential algorithm for its respective par-

tition. Depending on the model, workers may cooperate

during each step according to a proper communication

stencil. The whole result is reassembled by the gather G

(see Fig. 1b).

The adaptivity is based on dynamically selecting the best pos-

sible version of the same distributed application, depending on

the actual situation in which it is executed. In this parallelism

paradigm we could also have some functional dependencies

between the computations performed by the workers (the gray

lines in Fig. 1b), i.e.: a worker in order to complete its own

task could require to know the output data produced during

the computations performed by the other workers.

III. ROUTING ALGORITHMS FOR PERVASIVE GRID

COMPUTING

Our aim is the definition of a wireless routing protocol en-

abling resource selection based on both link (i.e., transmission

latencies) and computing node performance. For computing

nodes, we can keep updated system load information, e.g.

related to current computing load, on each node running the

routing protocol. This information, along with communication

latency information, will be used to solve the mapping problem

of ASSISTANT components to available resources.

During the last years, several routing algorithms for ad-

hoc networks has been developed, each one with different

characteristics and behavior. Among others we have resorted

to the Optimize Link State Protocol (OLSR) [4] that allow a

more efficient carrying of information throughout the network.

The resource discovery and the QoS assurance are inde-

pendent from the routing algorithm; our aim is to propose

a new routing policy able to guarantee target performance

for distributed computing applications with low overhead

signaling based on a clustering architecture. In that sense we

have resorted to an evolution of the OLSR called QoS-OLSR

(QOLSR) [5], where the HELLO messages are used also for

estimating the delay and the bandwidth among neighbor nodes.

However, the two QoS values are only estimated but they are

not added to the routing table.

Our proposal is toward an extension of the routing table

by including delay and bandwidth values along with other

parameters more specific for the distributed processing un-

der evaluation. In particular we will consider the following

parameters on each node:

• the CPU type: expressed in terms of elaboration power

or architecture type (e.g. x86, MIPS, XScale, etc.);

• the occupied CPU percentage: as a terms for the useful

availability of the CPU;

• allocated memory: expressed in terms of MB of the used

RAM within the node;

• battery charge: expressed in terms of remaining time

battery charge.

Moreover, for each path is defined the residual energy as the

minimum value of the batteries charge value along the path.

The occupied CPU and available memory values are expressed

as an Exponential Moving Average defined as:

ai = αxi + (1− α)ai−1 (1)

where ai is the actually estimated mean value, xi is the current

measured value and ai−1 is the previous estimated value; the

smoothing factor α has been set to, respectively, 0.8 and 0.9.

The routing table filling mechanism needs to take into

account that we aim to build clustering set for the specific

application we are considering. We consider the notable case

of a set of mobile nodes interconnected by a wireless network.

We can think to logically organize mobile computing nodes in

clusters characterized by increasing network ranges (e.g. from

1-hop to N-hops clusters). On one hand, lower range clusters

provide higher communication latency performance, but they

usually aggregate a lower number of computing nodes, which

influences the computing performance. On the other hand,

larger range clusters provide higher parallelism degrees, but

at the cost of a higher communication latency. The HELLO

messages needs to be modified in this way:

• they must carry information about available bandwidth,

delay and residual energy of the path;

• they must carry the node characteristics in terms of

CPU type, occupied CPU percentage, available memory,

battery charge.

The Topology Control (TC) messages are also extended in

order to carry:

• the same QoS metrics used in the HELLO messages;

• the information needed to build the cluster table. In every

node, the TC message sender will be a cluster head (CH)

in the cluster tables, and its own n-hops neighbors will

form the Vi set of that entry.

A node can fill a neighbor table with the list of 1-hop nodes

with the IP address of the HELLO messages that store the

address of the node itself. However our aim is to form a cluster

structure able to support the distributed computing; for this

reason, following the routing table, each node needs to build

a cluster table where each possible cluster within the network

is defined.

In order to reduce the complexity we will consider that the

number of entry of the cluster table corresponds to the nodes

within the network, by considering that the cluster is defined

as the set on of node at 1-hop distance. Each entry of the

cluster table has the following fields:

• CH: It is the cluster head identifier, including its IP

number, and characteristics in terms of bandwidth, delay,

battery charge, CPU, and available memory;

• ViViVi: It represent the i-th node identifier (with the same

QoS metrics of above regarding the i-th node or the link

between CH and Vi) belonging tho the cluster having as

cluster head the node identified in the field CH. There

could be a number of entry equal to the number of nodes

belonging to the cluster;

• timestamp: It represent the time when the cluster table

has been updated.

A. Task Farm

We have now considered the use of the above described

routing algorithm to the case of a task farm scheme. In

this case we have one emitter node, a certain number of

worker nodes and one collector node. By exploiting the routing

algorithm we can select the nodes involved in the task farm

computation.

Let us consider to have a set V containing all the nodes in

the ad-hoc network. For each node i we can have:

• BWi, the maximum occupied bandwidth among all links

composing a generic path form a network node to i;
• di, the delay for reaching i;
• Powi, the maximum amount of energy consumed among

the network (battery powered) nodes members of a

generic path to i, including i itself;

• Memi, the memory allocated in the node i;
• CPUi, the occupied CPU at node i.

Thus, we can define two cost functions, one related to variable

costs (Ai), dependent on the new work to be allocated, and

one related to the fixed costs (Bi), dependent on the actual

status of the node:

Ai = ∆M̃emi + ΓC̃PU i (2)

Bi = αBWi + βdi + γPowi + δMemi + ǫCPUi (3)

where M̃emi and C̃PU i corresponds, respectively to the

memory and CPU needed for precessing the work in the i-

th node, and ∆, Γ, α, β, γ, δ, and ǫ are weights. We can thus

derive the objective function, that is:

min

(
∑

i∈V

MiAi +Bi

)
(4)

where Mi corresponds to the number of computations al-

located on node i. The optimization problem has only a

constraint, only one computation has to be mapped in a node

so: ∑

i∈V

Mi = 1 where Mi ∈ {0, 1}, ∀i ∈ V.

B. Data Parallel

In this case we consider a data parallel scheme for dis-

tributed computing. We have now three node types: one scatter,

a certain number of workers and one gather.

Differently from the Task farm we have now to solve two

optimization problems: we need first to identify the cluster to

be used for the computing, and then select which nodes should

be used within the cluster.

The cluster selection is based on the following cost function

to be minimized:

min

(
∑

i∈CT

σi

∑

j∈CTi

(
αBWi,j + βdi,j + γPowi,j

+ δMemi,j + ǫCPUi,j

)
+ φ(MaxW −Wi)

)
(5)

where the double index (i, j) stands for the i-th cluster head

and the j-th node at one-hop distance for that cluster head, Wi

is the maximum number of workers in the cluster i, MaxW is

the maximum number of worker required by the application,

ad φ is a weight. The value of σi is equal to 1 if the cluster

is the optimum and 0 otherwise.

After selecting the optimum cluster we want to select the

nodes within the cluster where the computations will be

performed. In a node can be executed, according with the

CPU type, one or more working process (W) in parallel. The

function to be minimized for selecting the nodes is:

min

H

∑

j∈CTi

(MjAj +Bj) +K (MaxS − S)

 (6)

where Mj ∈ N is the number of tasks dispatched to the i-th

node of the optimal cluster CTi, H and K are the two not

negative weights. In this case the fixed cost of the j-th node

is computed using the cluster table entry.

We have now introduced the values MaxS and S that

corresponds, respectively, to the maximum number of itera-

tions needed by the data parallel application and the number

Procedure 1 The greedy heuristic

S ←MaxS
while S ≥ SminV al do

W ← f(S)
if W ≥WCTi

then

B ← sort(B)
j ← 1
while W > 0 do

if maxWorker(Bi) ≤W then

MBj
←MaxNodeWBj

else

MBj
←W

end if

W ←W −MBj

j ← j + 1
end while

return M
else

S ← S − 1
end if

end while

return the computations can’t be mapped

of iterations. The workers’ number is function (f(·)) of the

variable S such that: if S decreases, also W become smaller.

It is desirable to perform the maximum number of iterations

(but not less than SminV al) and map the computations in

the nodes subject to the following constraint: 0 ≤ Mj ≤
MaxNodeWj . MaxNodeWj is the maximum number of

computations that can be executed in parallel by the j-th node.

The first two optimization problems proposed can be easily

solved by an exhaustive search in the admissible solutions

set: usually the number of nodes participating to the same

wireless network is not so big. Differently the last one is

a multi-objective optimization problem that is convenient to

solve through the greedy heuristic reported in Procedure 1.

The greedy heuristic does not takes into account the weights

H and K , that in the following will not be used. The vector

of fixed costs B is sorted in ascending order by the sort()

routine and Bi stores the IP address of the node in the i-th

vector position. The scatter functionalities are mapped on then

node with the minimum fixed cost.

IV. NUMERICAL RESULTS

The effectiveness of the proposed routing algorithms has

been proven with numerical results obtained by computer

simulations, resorting to the OMNeT++ framework [6].

The considered scenario is constituted by a variable number

of nodes from 5 to 30, randomly distributed within a square

area of 1 km2. The nodes are connected among them by

using IEEE 802.11g links with 54 Mbit/s, and each node can

move to a random arrival point within the area with a speed

uniformly distributed between 3 km/h and 5 km/h; each node

remains still for a time interval uniformly distributed between

3 s and 30 s [7].

TABLE I
WEIGHT VALUES FOR EACH CONSIDERED POLICY.

Weights Policy A Policy B Policy C

α 2 2 2

β 6 6 6

γ 0 0 0

∆, δ 0 1500 1500

Γ, ǫ 0 1 0

φ 100 100 100

In Figs. 2a and 2b, the average service time has been

considered. The service time is defined as the time needed

for completing the processing of a certain job, including the

processing time by the working nodes and the transmission

time among the nodes. We have considered the performance

with a variable number of nodes within the area of interest.

The tasks to be executed are generated with a rate of 5 s. The

comparison is made among the three following policies.

Policy A refers to the simple QOLSR algorithm where no

information about CPU, memory and battery energy is taken

into account. Policies B and C take into account the supple-

mentary information proposed in this paper. The difference

between B and C is that in C we do not take into account the

CPU status. We can state that the proposed policies outperform

the standard QOLSR policy. Moreover it is possible to note

that the influence of the CPU status is very small for the data

parallel paradigm; this is due to fact that the processing queue

is most affected by memory leakage than CPU status. In Tab.

I, the weights for each policy are reported.

In order to carry the QoS metrics needed by the policy B or

C, the QOLSR HELLO and TC messages header and payload

dimensions are increased respectively of 16 and 8 bits. The

policy A does not require any expansions of the HELLO and

TC messages.

In Figs. 3a and 3b, the outage probability is represented. We

have considered the same scenario and policies as before. The

outage probability is defined as the percentage of tasks not

completed within the simulation time. The outage probability

is mainly affected by two effects. When the number of nodes

is low, they are not in a sufficient number to execute all the

tasks, so that their processing queues remain full. On the other

end, when the number of nodes is high, their density is high,

so that the interference at the communication layer generate

an increasing packet loss, and this increases the transmission

queues. However, it is possible to note that the proposed

policies still outperform the QOLSR performance; for the

selected scenario an optimum value for the number of nodes

can also be defined.

The effectiveness of the proposed node selection mechanism

can be noted by focusing our attention on Fig. 4, where we

have plotted the amount of mapped computations on each node

for the data parallel scheme. On the x-axis, the ID of each

node is considered (we consider here the scenario with 30

nodes), while the y-axis has a double meaning: it corresponds

to the percentage of memory allocated in for each node at the

beginning of simulations and not freed during the experiments

5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

Mobile hosts

A
ve

ra
g

e
se

rv
ic

e
ti

m
e

[s
]

Policy A
Policy B
Policy C

(a) Task Farm

5 10 15 20 25 30
0

30

60

90

120

150

180

210

240

270

300

Mobile hosts

A
ve

ra
g

e
se

rv
ic

e
ti

m
e

[s
]

Policy A
Policy B
Policy C

(b) Data Parallel

Fig. 2. Performance in terms of average service time.

(excluding the memory overhead produced by the distributed

application) and the amount of allocated computations to each

node. It is possible to note that the selection mechanism allo-

cates more computations to those nodes with lower allocated

memory; moreover, nodes with the same amount of occupied

memory has quite similar number of allocated jobs. This is

what we expect for reducing the processing delay. Finally we

can state that the policy C should be adopted with the task farm

and data parallel paradigms considering the average service

time and the outage probability.

V. CONCLUSION

The demand for even more complex processing in several

scenarios has increased the interest toward grid computing; on

the other end, the recent advances in the communications field

have allowed fast interconnection among nodes with wireless

links. Aim of this paper is to propose a routing technique for

grid computing in pervasive scenarios where multiple nodes

are connected among them for setting up a pervasive grid

network. The proposed routing scheme takes into account

the characteristics of the considered distributed application

allowing better performance in terms of fairness and service

time.

REFERENCES

[1] G. Li, H. Sun, H. Gao, H. Yu, and Y. Cai, “A survey on wireless grids
and clouds,” in Proc. of IEEE GCC2009, Lanzhou, Gansu, China, Aug.
2009, pp. 261–267.

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Mobile hosts

O
u

ta
g

e
[%

]

Policy A
Policy B
Policy C

(a) Task Farm

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Mobile hosts
O

u
ta

g
e

[%
]

Policy A
Policy B
Policy C

(b) Data Parallel

Fig. 3. Performance in terms of outage probability.

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #*
!%

"*

"%

#*

#%

$*

$%

%*

+,-./012,34156

7
//
,
8
9
40
6
1:
0
:
,
;<
1=
>
?

@
1+
9
A
A
0
6
1B
,
:
C
A
9
4.
,
D
3

E;0!9//,894061:0:,;<

FC:-0;1,G18,:AC494.,D31:9AA06

Fig. 4. Computation mapping on the nodes.

[2] R. Fantacci, M. Vanneschi, C. Bertolli, G. Mencagli, and D. Tarchi, “Next
generation grids and wireless communication networks: towards a novel
integrated approach,” Wireless Communications and Mobile Computing,
vol. 9, no. 4, pp. 445–467, Apr. 2009.

[3] C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi, “Expressing adap-
tivity and context awareness in the ASSISTANT programming model,”
in Autonomic Computing and Communications Systems, ser. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer, 2010, vol. 23, pp. 32–47.

[4] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” RFC3626, Oct. 2003. [Online]. Available: http://www.ietf.org/
rfc/rfc3626.txt

[5] H. Badis and K. Al Agha, “QoS routing for ad hoc wireless networks
using OLSR,” European Transactions on Telecommunications, vol. 16,
no. 5, pp. 427–442, Sep./Oct. 2005.

[6] Omnet++ community site. [Online]. Available: http://www.omnetpp.org/

[7] C. Sommer, I. Dietrich, and F. Dressler, “Simulation of ad hoc routing
protocols using OMNeT++,” Mobile Networks and Applications, Jun.
2009, published online.

