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Reliability of Multicast under Random Linear

Network Coding
Evgeny Tsimbalo, Andrea Tassi and Robert J. Piechocki

Abstract—We consider a lossy multicast network in which the
reliability is provided by means of Random Linear Network
Coding. Our goal is to characterise the performance of such
network in terms of the probability that a source message is
delivered to all destination nodes. Previous studies considered
coding over large finite fields, small numbers of destination nodes
or specific, often impractical, channel conditions. In contrast, we
focus on a general problem, considering arbitrary field size and
number of destination nodes, as well as a realistic channel. We
propose a lower bound on the probability of successful delivery,
which is more accurate than the approximation commonly used
in the literature. In addition, we present a novel performance

analysis of the systematic version of RLNC. The accuracy of
the proposed performance framework is verified via extensive
Monte Carlo simulations, where the impact of the network and
code parameters are investigated. Specifically, we show that the
mean square error of the bound for a ten-user network can be
as low as 9 · 10

−5 for non-systematic RLNC.

Index Terms—Multicast Networks, Broadcast Networks, Re-
liability, Fountain Coding, Non-systematic RLNC, Systematic
RLNC.

I. INTRODUCTION

Reliability is a key performance metric in modern wire-

less multicast networks, in which a single transmitter, or a

source node, broadcasts to multiple receivers, or destination

nodes, also referred to as users. Traditionally, the reliability in

multicast networks is provided by Application Level Forward

Error Correction (AL-FEC) [1], where coding is performed

over packets rather than bits. AL-FEC is typically based on

a digital fountain approach [2] implemented, for instance, in

Raptor codes [3]. These codes, however, operate efficiently

only when the number of packets per block is large, which

makes them prohibitive in applications where the block size

is limited - for instance, due to delay constraints [4].

As an alternative to traditional fountain codes, the idea

of combining packets using random linear coefficients [5],

also known as Random Linear Network Coding (RLNC) [6],

has attracted significant research interest. RLNC is based

on the original concept of network coding proposed by R.

Ahlswede et al. [7] and is proved to be capacity-achieving for

lossy multicast networks [8], [9]. In contrast with traditional

fountain codes, schemes based on RLNC do not require a large

block size [4].
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In a multicast network operated under RLNC, the source

node encodes an information message of K packets by com-

bining the packets using random coefficients belonging to a

finite field [10]. An encoded packet is therefore associated with

a vector of coding coefficients. Each user needs to collect K
linearly independent vectors of coding coefficients to be able

to decode the source message, typically by means of Gaussian

elimination. A key performance indicator of such network can

be the probability that all users collect K linearly indepen-

dent vectors of coding coefficients, which will be referred

to as probability of successful delivery. As an alternative to

traditional, non-systematic encoding, a systematic version of

RLNC, in which the information message is transmitted first,

was also proposed [11]–[13]. As shown in [14], systematic

RLNC can reduce decoding delay and complexity.

The traditional approach to the performance analysis of

RLNC and multicast networks is to assume an infinite, or suf-

ficiently large, field size [6], [15], [16], so that any K vectors

of coding coefficients are linearly independent with a high

probability. Under this assumption, the multicast network can

be viewed as a set of independent unicast connections. While

the assumption significantly simplifies the analysis, the field

size is limited in practice [17], [18]. As a consequence of that,

the probability that the vectors of coding coefficients collected

by a user are linearly dependent can be non-negligible, even

if their number is larger than K . In addition, some vectors of

coding coefficients can be received simultaneously by multiple

users, giving rise to statistical correlation. As a result, with a

finite field size, the multicast network cannot be approximated

as a set of independent unicast connections, and the probability

of successful delivery needs to be calculated jointly.

The analysis of multicast networks and codes with coeffi-

cients generated from a small field size has been also studied

in the literature. The initial studies [19], [20] were based on

Markov chain models, but due to complexity the number of

users was limited to two. Another study [12] applied a Markov

chain model to a network with an arbitrary number of users,

assuming that the users receive disjoint sets of packets. In [21],

an exact probability of successful delivery, valid for any field

size, was derived for the simple case of a unicast, point-to-

point connection. The result was extended to the systematic

version of RLNC in [22]. Following that, in [23], [24], a

two-user multicast network was considered in the context of

security and relay communication, respectively. Assuming a

sufficiently high packet erasure rate (PER), so that the users

are likely to receive disjoint sets of packets, the probability

of successful delivery was approximated as a product of those

corresponding to each individual user. In contrast, an exact
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expression for the probability of successful delivery for the

same network, valid for any field size and PER, was obtained

in [25] for non-systematic RLNC, based on the rank analysis

of structured random matrices [26].

To summarise, the previous studies on the performance of

RLNC and multicast networks considered large finite fields, a

limited number of users or specific (often impractical) channel

conditions. In the cases when the exact formulation formu-

lation was obtained, the analysis was limited to two users.

Moreover, the existing studies focus mainly on traditional,

non-systematic RLNC. To the best of our knowledge, there

is no study in the literature that considers a general case of

arbitrary field size, number of users and channel conditions

for both non-systematic and systematic RLNC.

In this work, we address the limitations of the previous

studies and provide the following contributions:

• In contrast with [6], [15], [16], [23], [24], we calculate

the probability that all users recovered the source mes-

sage jointly, taking into account a finite field size and

commonly received packets.

• We generalise the analysis limited to a two-user network

[20], [25] to an arbitrary number of users, and derive

a tight lower bound for the probability of successful

delivery in the case of traditional, non-systematic RLNC.

In contrast with [23], [24], the bound takes into account

the correlation effect due to commonly received packets.

• We also present a novel analysis for the systematic

version of RLNC. We argue that the correlation effect is

less profound than in the non-systematic case, and each

user can be considered independently, even if the field

size is small. We formulate the result explicitly and prove

that it is a tight lower bound.

• We perform thorough benchmarking of the proposed

bounds via extensive Monte Carlo simulation, where the

effects of the number of users, the PER, the source

message size and the field size are investigated. We

demonstrate that the considered bounds are especially

accurate under realistic channel conditions. In the non-

systematic case, the derived bound provides a much

closer approximation than the traditional bound used

in the literature. In particular, this holds true in those

scenarios where users are spread across the coverage area

of the transmitter and experience heterogeneous PERs.

• We provide an extensive study into the performance of

multicast networks under RLNC and offer an insight

into the selection of code parameters for various network

configurations.

The remainder of the paper is organised as follows. Sec-

tion II describes the system model and provides the necessary

background on multicast networks. The proposed theoretical

framework is presented in Section III, where the bounds for

the probability of successful delivery are derived for both non-

systematic and systematic versions of RLNC. In Section IV,

the proposed bounds are compared with simulated results and

existing bounds. Section V draws conclusions and highlights

future research avenues.

II. SYSTEM MODEL AND BACKGROUND

Consider a multicast network, in which a source node

transmits to L destination nodes, or users. Each of the L links

is assumed to be lossy and characterised by a PER ǫj for

j = 1, . . . , L. Here, we assume that packet erasures occur

as statistically independent events. The goal is to deliver a

message of K source packets to each user. It will be assumed

that the i-th source packet si, i = 1, . . . ,K , is a column vector

of elements from a finite field Fq of size q. The number of

elements in vector si is equal to ⌈t/ log2 q⌉ [27], where t
denotes the packet length in bits, which is assumed to be the

same for all packets.

Given K source packets, the encoder generates N ≥ K
coded packets {ck}

N
k=1, each being a vector consisting of

⌈t/ log2 q⌉ elements from Fq . Using the matrix notation, the

encoding operation can be expressed as follows:

[c1, . . . , cN ] = [s1, . . . , sK ] ·G, (1)

where G ∈ F
K×N
q is a K × N matrix of coding coefficients

generated uniformly at random from Fq. In the case of system-

atic RLNC, the first K columns of G form an K×K identity

matrix. In this way, the first K transmissions are the source

packets, also referred to as systematic packets, followed by

N −K coded, non-systematic packets. It is beyond the scope

of the paper to address sparse implementations of RLNC [28].

Due to packet erasures, each user will receive a subset

of transmitted packets. Let Uj ⊆ {1, . . . , N} denote a set

of indices of transmitted packets received by the j-th user,

j = 1, . . . , L. Let also mj = |Uj | denote the number of

packets received by the j-th user. It is assumed that all users

have a knowledge of the coding coefficients associated with

each received packet. This can be achieved by transmitting the

coefficients or the seed used to generate them in the packet

header [6]. The j-th user can therefore construct an mj ×K
matrix of coding coefficients, which is obtained from G by

deleting the rows corresponding to lost packets. This matrix

will be denoted as Cj and will be referred to as the coding

matrix of the j-th user. A user can recover the source message

if its coding matrix is full rank. We now define the probability

of successful delivery PL(ǫ) of an L-user multicast network

with PERs ǫ = (ǫ1, . . . , ǫL) as the probability that all users

have successfully recovered the source message.

The simplest case of a multicast network is a point-to-point

link with a single user characterised by a PER ǫ. For a non-

systematic code characterised by (N,K, q), the probability of

successful delivery for such link is given by [24]:

P (ǫ) =

N
∑

m=K

(

N

m

)

(1− ǫ)mǫN−m
P(m,K). (2)

Here, P(m,K) is the probability that an m × K matrix of

elements generated uniformly at random from Fq is full rank,

which is given by [21]:

P(m,K) =

K−1
∏

i=0

(1− qi−m). (3)
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TABLE I
NOTATION USED THROUGHOUT THE PAPER.

Notation Description

L Number of user forming a multicast network

K Number of packets forming an information message

N Number of coded packet transmissions

q Size of the finite field under consideration

Uj
Set of indices of transmitted packets received by the j-th
user

mj Total number of packets received by the j-th user

µ
Random variable denoting the number of packets re-
ceived simultaneously by all the users

θJ

Random variable denoting the number of packets re-
ceived simultaneously by a subset J of L users,
1 < |J | < L

θ
Tuple of variables θJ for all possible subsets J ,
1 < |J | < L

P(m,K)
Probability that an m×K matrix of elements generated
uniformly at random from Fq is full rank

P
(i)(m,K)

Probability that an m×K matrix of elements generated
uniformly at random from Fq has rank i

P (ǫ)
Probability of successful delivery over a point-to-point
link with PER ǫ for non-systematic RLNC

P ∗(ǫ)
Probability of successful delivery over a point-to-point
link with PER ǫ for systematic RLNC

PL(ǫ)
Probability of successful delivery over a multicast net-
work with L ≥ 2 users and PERs ǫ = (ǫ1, . . . , ǫL) for
non-systematic RLNC

P ∗

L
(ǫ)

Probability of successful delivery over a multicast net-
work with L ≥ 2 users and PERs ǫ = (ǫ1, . . . , ǫL) for
systematic RLNC

It can be observed that (2) can be thought of as a marginalisa-

tion of the rank of the user’s coding matrix over the distribution

of the number of rows m in this matrix.

For a systematic (N,K, q) code and a point-to-point link,

the probability of successful delivery can be expressed as

follows [22]:

P ∗(ǫ) =
N
∑

m=K

(1− ǫ)mǫN−m
K
∑

h=hmin

(

K

h

)(

N −K

m− h

)

·P(m− h,K − h), (4)

where h denotes a possible number of received systematic

packets and hmin is defined as max(0,m−N+K). Compared

with (2) for the non-systematic case, we observe that an

additional marginalisation over the distribution of h is required

for the systematic code. In addition, the number of ways

to select m received packets out of N is replaced with the

number of ways to select h systematic packets out of K
and m − h non-systematic packets out of N − K . Given

that the user receives h systematic packets out of m, h
columns of its coding matrix will be linearly independent.

Therefore, for the matrix to be full rank, the remaining K−h
columns formed by the non-systematic coding vectors should

be linearly independent. The minimum value of h, hmin, is

chosen as the difference between the total number of received

packets m and a maximum possible number of non-systematic

packets, min(m, (N −K)).
Consider now the general case of an L-user multicast

network. As mentioned in Section I, if the field size q is

sufficiently large, each user is able to recover the message

with a high probability once it receives at least K packets.

Indeed, (3) is close to 1 for large q. In this case, the users

will recover the message independently from each other and

the probability of successful delivery can be approximated as

follows (in the case of a non-systematic (N,K, q) code):

PL(ǫ) ∼=

L
∏

j=1

P (ǫj), (5)

where P (ǫj) is the probability of successful delivery of a

source message over a point-to-point link with a PER ǫj
corresponding to the j-th user, as calculated by (2). It should

be noted, however, that with a limited field size q, the accuracy

of (5) is expected to decrease as the number of users grows.

For a specific case of L = 2, it was shown in [24] that

(5) is a good approximation even if q is small, provided that

the number of transmissions and PER are high enough for the

users to receive independent subsets of packets. By contrast,

an exact formulation for the probability of successful delivery,

valid for any field size, number of transmissions and channel

conditions, was obtained for a two-user multicast network in

[25] for non-systematic RLNC. The exact formulation is given

as follows:

P2(ǫ) =

N
∑

m1=K

N
∑

m2=K





2
∏

j=1

(1− ǫj)
mj ǫ

N−mj

j





·
∑

µ

(

N

µ

)(

N − µ

m1 − µ

)(

N −m1

m2 − µ

)

P2(m, µ;K), (6)

where m = (m1,m2) and the innermost summation is

performed over µ = max(0,m1+m2−N), . . . ,min(m1,m2).
Here, µ denotes the number of common packets received by

the two users and P2(m, µ;K) denotes the probability of

two correlated random matrices with dimensions m1×K and

m2 ×K and µ common rows being simultaneously full rank,

for m1,m2 ≥ K . This probability is given by

P2(m, µ;K) =
∑

i

P
(i)(µ,K)

2
∏

j=1

P(mj − µ,K − i), (7)

where the summation is performed over the values of i from

max(0,K − m1 + µ,K − m2 + µ) to min(µ,K). Term

P
(i)(µ,K) denotes the probability that a random µ×K matrix

has rank i [25]:

P
(i)(µ,K) =

1

q(µ−i)(K−i)

i−1
∏

l=0

(1− ql−µ)(1 − ql−K)

1− ql−i
. (8)

The notation introduced in this section is summarised in

Table II.

III. PROPOSED THEORETICAL FRAMEWORK

We now turn our attention toward the general case of an

L-user multicast network described at the beginning of the

previous section. Our goal is to derive the probability of

successful decoding in such a network for two cases - non-

systematic and systematic RLNC. We start by formulating a

general framework, and then consider each case individually.

The transmission of N coded packets over L lossy links can

be modelled as N independent trials. In each trial, the packet
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can be received by a single user, by a selection of at least two

users or by none of the users. The total number of outcomes

is equal to
∑L

i=0

(

L
i

)

= 2L.

Consider first the packets received by a group of

at least two users. Let µ be a random variable de-

noting a number of packets received simultaneously by

all the users, i.e., µ = |U1 ∩ . . . ∩ UL|. Furthermore, let

θJ =
∣

∣

∣

(

⋂

j∈J Uj

)

∩
(

⋂

j /∈J Ūj

)∣

∣

∣, where J ⊂ {1, . . . , L},

1 < |J | < L, be a random variable denoting the number of

transmitted packets received simultaneously by at least two,

but less than L users and not received by the remaining users.

For convenience, let θJ obtained for all possible subsets J be

assembled in a tuple of 2L − L− 2 random variables θ.

Consider now the packets received by a single user only.

However, instead of introducing another set of L random vari-

ables, we observe that if the total number of packets received

by the j-th user, mj , is known, the number of packets received

only by this user can be calculated as mj − µ−
∑

J:j∈J θJ ,

where the summation is performed over all possible subsets

J ⊂ {1, . . . , L}, 1 < |J | < L, that include j. In other

words, the number of packets unique to the j-th user is fully

determined by mj , µ and θ.

Finally, the number of packets received by none of the users,
∣

∣

∣

⋂L
j=1 Ūj

∣

∣

∣, can be calculated as follows. If the numbers of

packets mj , for j = 1, . . . , L, received by each user are added

up, the number of packets µ common to all users will be

counted L times. Similarly, the number of packets θJ received

by a subset of users J ⊂ {1, . . . , L}, 1 < |J | < L, will be

counted |J | times. Since each transmitted packet should be

counted only once, the number of packets not received by any

user can be computed as follows:
∣

∣

∣

∣

∣

∣

L
⋂

j=1

Ūj

∣

∣

∣

∣

∣

∣

= N−
L
∑

j=1

mj+(L−1)µ+
L−1
∑

l=2

(l−1)
∑

J:|J|=l

θJ . (9)

Example 3.1: For a multicast network of L = 3 users,

• µ = |U1 ∩ U2 ∩ U3|,
• θ{1,2} = |U1 ∩ U2 ∩ Ū3|,
• θ{1,3} = |U1 ∩ Ū2 ∩ U3|,
• θ{2,3} = |Ū1 ∩ U2 ∩ U3|.

The number of packets received uniquely, for instance,

by the first user is m1 − µ− θ{1,2} − θ{1,3}, and the

number of packets received by none of the users is

N −
∑

j mj + 2µ+ θ{1,2} + θ{1,3} + θ{2,3}.

To summarise, the combination of m1, . . . ,mL, µ and θ

describes all possible outcomes of the transmission of N coded

packets. Let f(m, µ, θ;N ; ǫ) be the joint probability mass

function (PMF) of these variables, where m = (m1, . . . ,mL).
The PMF can be expressed as follows:

f(m, µ, θ;N ; ǫ) = γ(m, µ, θ;N)ϕL(m, N, ǫ). (10)

The first term, γ(m, µ, θ;N), denotes the number of ways to

select m, µ and θ out of N . It can be calculated as a product of

binomial coefficients, the number of which is equal to 2L−1,

the total number of elements in m, µ and θ. The second term

in (10) denotes the probability of a particular combination of

values contained in m, µ, θ and can be calculated as follows.

Consider probability 1 − ǫj , which is associated with coded

packets received by the j-th user, j = 1, . . . , L. The total

number of such packets is mj . On the other hand, probability

ǫj is associated with packets not received by the j-th user, the

total number of which is N−mj . Therefore, ϕL(m, N, ǫ) can

be calculated as follows:

ϕL(m, N, ǫ) =

L
∏

j=1

(1− ǫj)
mj ǫ

N−mj

j . (11)

We observe that the probability of particular combination of

m, µ and θ does not depend on µ or θ.

In general, the probability of successful decoding for a mul-

ticast network of L users can be calculated by marginalising

the probability of all L coding matrices being full rank over

the joint distribution of m, µ and θ:

PL(ǫ) =
∑

m,µ,θ

f(m, µ, θ;N ; ǫ)PL(m, µ, θ;K), (12)

where

PL(m, µ, θ;K) = Pr





L
⋂

j=1

rank(Cj) = K



 (13)

is the probability that coding matrices C1, . . . ,CL are si-

multaneously full rank. We note that (12) applies to both

non-systematic and systematic codes. One can observe two

challenges associated with the direct calculation of (12). The

first challenge is to express the summation over m, µ and

θ and to calculate the PMF f(m, µ, θ;N ; ǫ). Based on the

discussion above, the number of nested sums in (12) and the

number of binomial coefficients in f(m, µ, θ;N ; ǫ) will grow

exponentially with the number of users L, thus making the

direct approach impractical.

The second challenge associated with computing (12) is to

calculate the probability (13) of L correlated matrices being

full rank, for a given combination of m, µ and θ. In Section II,

(7) shows how this probability can be exactly calculated for

L = 2 by marginalising it over the distribution of the rank

of the submatrix formed by the common rows. Applying

this approach to a larger number of matrices, however, is

impractical, since the number of distinct sets of common rows,

hence the number of submatrices whose ranks need to be

considered, grows exponentially with L.

Next, we address the problem of calculating (12) for non-

systematic and systematic RLNC.

A. Non-systematic RLNC

We start with the second challenge, the calculation of the

probability (13) of L correlated coding matrices being full

rank. First, we establish the following result:

Lemma 3.1: The probability (13) that L correlated random

matrices generated over Fq with dimensions mj ×K are full

rank, j = 1, . . . , L, is lower-bounded as follows:

Pr





L
⋂

j=1

rank(Cj) = K



≥

L
∏

j=1

Pr [rank(Cj) = K]

=

L
∏

j=1

P(mj ,K), (14)
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where P(mj ,K) is given by (3).

Proof: See Appendix A.

The lower bound (14) is often implicitly used in the litera-

ture. For instance, by substituting (14) to (12), the approxima-

tion (5) can be obtained. In contrast with the literature, how-

ever, Lemma 3.1 establishes that this approximation is indeed

a lower bound. At the same time, we note that the bound (14)

becomes loose if significant correlation between the matrices

is present. For instance, consider two matrices with dimensions

m1 ×K and m2 ×K , such that m1 ≥ m2 ≥ K and µ = m2.

Clearly, in this case the probability of both matrices having

full rank is equal to P(m2,K). However, the same probability

as predicted by bound (14) is equal to P(m1,K)P(m2,K),
which is smaller than the exact value by P(m1,K) times.

Based on Lemma 3.1, we now establish a tighter bound for

(13):

Lemma 3.2 (Improved bound): The probability (13) that L
correlated random matrices generated over Fq are full rank is

lower-bounded by P̃L(m, µ;K), which is given by

P̃L(m, µ;K) =
∑

i

P
(i)(µ,K)

L
∏

j=1

P(mj − µ,K − i), (15)

where the summation is performed over the values of i from

maxj(0,K − mj + µ) to min(µ,K) and P
(i)(µ,K) is the

probability that an µ×K matrix has rank i, as given by (8).

Proof: Using the notation introduced earlier, each of the

coding matrices C1, . . . ,CL has µ rows common to all of

them. By averaging over the distribution of the rank of the

matrix formed by these µ common rows, probability (13) for

non-systematic RLNC can be expressed as follows:

PL(m, µ, θ;K) =

min(µ,K)
∑

i=maxj(0,K−mj+µ)

P
(i)(µ,K)

·Pr





L
⋂

j=1

rank(C′
j) = K − i



 , (16)

where C
′
j denotes a matrix formed by the intersection of the

mj − µ rows of Cj not common to all matrices and K − i
columns. The starting value of i in the summation in (16)

is chosen such that for any matrix C
′
j , there are at least as

many rows as columns, i.e., mj − µ ≥ K − i. Such starting

value excludes unnecessary summation terms. As regards the

maximum value of the summation index i, it is chosen as

the minimum dimension of the matrix formed by µ common

rows. The application of Lemma 3.1 to the second term in

the product under the summation in (16) results in the lower

bound (15).

Remark 3.1: For a two-user multicast network, the bound

(15) is exact and reduces to (7).

We note that by marginalizing over the distribution of the

rank of the matrix formed by the rows common to all matrices,

the bound (15) is expected to be tighter than that of Lemma

3.1, especially if the number of common rows µ is large. We

illustrate this statement using the following example.

Example 3.2: Consider three 6 × 5 matrices generated

uniformly at random over the binary field F2, such that

all three matrices have µ = 4 common rows. Furthermore,

assume that each of the three possible pairs of matrices has

an additional common row between them. In this case, none

of the matrices has rows generated independently from the

other matrices. The probability of all three matrices being full

rank estimated by Monte Carlo simulations and obtained by

averaging over 104 random realisations is equal to 0.33. The

same probability obtained using the bounds (14) and (15) is

equal to 0.20 and 0.27, respectively. Clearly, in this example

the new bound of Lemma 3.2 provides closer approximation.

At this point, we have established a more accurate lower

bound for the probability (13) that all L coding matrices are

simultaneously full rank for a given distribution of received

packets among the users. We now proceed to the derivation

of the probability of successful delivery (12) for the non-

systematic case.

Theorem 3.1: The probability of successful delivery in an L-

user multicast network characterised by PERs ǫ and employing

an (N,K, q) non-systematic code is lower-bounded as follows:

PL(ǫ) ≥
∑

m

ϕL(m, N, ǫ)
∑

µ

αL(m, µ;N)P̃L(m, µ;K),

(17)

where

αL(m, µ;N) =

(

N

µ

)minj(mj−µ)
∑

l=0

(−1)l
(

N − µ

l

)

·

L
∏

j=1

(

N − µ− l

mj − µ− l

)

(18)

and the summation is performed over mj = K, . . . , N and

µ = max



0,

L
∑

j=1

mj − (L− 1)N



 , . . . ,min
j

mj . (19)

Proof: Substituting (10) into (12) and using the fact that

ϕL (11) does not depend on µ and θ, the probability in

question can be expressed as follows:

PL(ǫ) =
∑

m

ϕL(m, N, ǫ)

·
∑

µ,θ

γ(m, µ, θ;N)PL(m, µ, θ;K). (20)

We now employ Lemma 3.2 and bound (20) from below:

PL(ǫ)≥
∑

m

ϕL(m, N, ǫ)
∑

µ

P̃L(m, µ;K)

·
∑

θ

γ(m, µ, θ;N). (21)

To prove (17), we now show that the innermost sum in (21) is

equal to αL(m, µ;N) given by (18). To this end, we rewrite

this sum as follows:

∑

θ

γ(m, µ, θ;N) =

(

N

µ

)

β, (22)

where

β =
∑

θ

γ(m− µ, 0, θ;N − µ). (23)
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In other words, by selecting µ out of N packets common

to all users, β is the total number of possible selections of
∑L

j=1(mj − µ) packets out of N − µ such that none of the

packets is received by all users at the same time. The value of

β can be calculated by the inclusion-exclusion principle in its

complementary form [29]. To this end, let S denote a set of

all possible selections of
∑L

j=1(mj−µ) packets out of N−µ.

The number of elements in this set is

|S| =
L
∏

j=1

(

N − µ

mj − µ

)

. (24)

Consider now subsets Sk of S, k = 1, . . . , N − µ, contain-

ing selections corresponding to the k-th transmitted packet

received by all the L users. Let S̄k denote the complement of

Sk in S. It can be observed that β can be thought of as the

cardinality of a set constructed as the intersection of all S̄k,

k = 1, . . . , N − µ. Using the inclusion-exclusion principle,

β = |

N−µ
⋂

k=1

S̄k|

= |S| −

N−µ
∑

k=1

|Sk|+
∑

1≤k1<k2≤N−µ

|Sk1
∩ Sk2

| − . . .

−(−1)z
∑

1≤k1<...<kz≤N−µ

|Sk1
∩ . . . ∩ Sz|, (25)

where z = minj(mj −µ) is the minimum possible number of

packets received by all the L users. The first summation in (25)

corresponds to N − µ possible selections of a single packet

received by all the users, with
∏L

j=1

(

N−µ−1
mj−µ−1

)

selections for

other N − µ − 1 available packets. Similarly, the second

summation in (25) corresponds to
(

N−µ
2

)

selections of two

commonly received packets and
∏L

j=1

(

N−µ−2
mj−µ−2

)

selections of

other packets. Expression (25) can therefore be written in a

compact form as follows:

β =

z
∑

l=0

(−1)l
(

N − µ

l

) L
∏

j=1

(

N − µ− l

mj − µ− l

)

, (26)

thus making the inner sum in (21) equal to αL(m, µ;N) (18).

The values of (m1, . . . ,mL) over which the outer-most

summation in (17) is performed are chosen so that each user

should receive at least K packets. As regards the number of

packets µ received by all users, its maximum value cannot

exceed the smallest mj , for j = 1, . . . , L. The starting value

of µ can be found assuming that all other N − µ transmitted

packets have been simultaneously received by L−1 users. As

a result, µ ≥
∑

j mj − (L− 1)N. If (L− 1)N >
∑

j mj , the

starting value of µ should be 0.

Remark 3.2: We note that bound (17) is obtained by

applying Lemma 3.2, meaning that only packets received

simultaneously by all users are considered to take into account

the correlation effect. As a result, the bound is expected to be

especially tight if the number of such packets µ is likely to

be large, which is typical in scenarios where a non-negligible

fraction of users experiences PERs that are relatively small.

We observe that this is the case of multicast networks where

users are spread across the coverage area of the source node

(namely, a base station serving a cell). As argued in [30],

3GPP’s LTE-A systems [31] are likely to ensure reduced user

PERs across the majority of the cell area. Finally, for large

values of PER, µ is likely to be small and the bound converges

to the traditional approximation (5).

Remark 3.3: The derived bound is exact for L = 2 users

and matches (6). Indeed, the product of binomial coefficients

in (6) can be shown to be equal to α2(m, µ;N) defined by

(18) as follows. Without loss of generality, let m1 ≤ m2. The

last binomial coefficient in (6) is equivalent to the number

of N − m2 selections out of N − µ packets, such that each

selection includes m1 − µ packets. We can again employ the

inclusion-exclusion principle and denote S as a set of all

possible selections, with the number of elements in this set

equal to
(

N−µ
N−m2

)

. Let Sk denote a subset of S containing

selections in which the k-th packet belonging to the group of

m1 − µ packets is not included, k = 1, . . . ,m1 − µ. The last

binomial coefficient in (6) can be expressed as follows:

(

N −m1

m2 − µ

)

=

∣

∣

∣

∣

∣

m1−µ
⋂

k=1

S̄k

∣

∣

∣

∣

∣

=

m1−µ
∑

l=0

(−1)l
(

m1 − µ

k

)(

N − µ− l

N −m2

)

. (27)

Multiplying the right-hand side of (27) with the first two

binomial coefficients of (6) yields:

(

N

µ

)(

N − µ

m1 − µ

)m1−µ
∑

l=0

(−1)l
(

m1 − µ

l

)(

N − µ− l

N −m2

)

=

(

N

µ

)m1−µ
∑

k=0

(−1)l
(

N − µ− l

m1 − µ− l

)(

N − µ− l

m1 − µ− l

)

= α2(m, µ;N).

B. Systematic RLNC

As pointed out in Remark 3.2, the bound (17) derived for

non-systematic RLNC was obtained by considering packets

received simultaneously by all users, thus partially taking

into account the correlation between their coding matrices.

In the case of systematic RLNC, the correlation arises only

from commonly received non-systematic packets, since the

systematic packets correspond to deterministic vectors of

coding coefficients. For small values of PER, each user is

likely to receive all K systematic packets regardless of the

number of received non-systematic packets. Even for large

values of PER, the correlation effect is smaller than in the

case of non-systematic RLNC, since the number of transmitted

non-systematic packets for systematic RLNC is smaller than

the total number of transmissions. Therefore, it is expected

that for systematic RLNC, considering a multicast network as

a set of independent unicast connections will result in an ap-

proximation close enough for any field size and PER. We now

state this result formally and prove that such approximation is

a lower bound, as in the case of non-systematic RLNC.

Theorem 3.2: The probability of successful delivery P ∗
L(ǫ)

of the L-user multicast network characterised by PERs ǫ and
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employing an (N,K, q) systematic code is lower-bounded as

follows:

P ∗
L(ǫ) ≥

L
∏

j=1

P ∗(ǫj), (28)

where P ∗(ǫj) is the probability of successful delivery of a

point-to-point link with a PER ǫj given by (4).

Proof: Consider the general formulation for the probabil-

ity of successful delivery of the multicast network (12), but

with marginalisation over the distribution of m only:

P ∗
L(ǫ) =

∑

m

ϕL(m, N, ǫ)P∗
L(m,K)

L
∏

j=1

(

N

mj

)

, (29)

where P
∗
L(m,K) denotes the probability that all L coding

matrices are simultaneously full rank. This probability can be

marginalised over the probability distribution of the number

of systematic packets hj received by the j-th user as follows:

P
∗
L(m,K) =

∑

h1

. . .
∑

hL





L
∏

j=1

(

K
hj

)(

N−K
mj−hj

)

(

N
mj

)





·Pr





L
⋂

j=1

rank(C′
j) = K − hj



 , (30)

where matrix C
′
j is composed of the intersection of mj − hj

non-systematic rows and K − hj columns of the j-th coding

matrix Cj . Equation (30) can be lower-bounded by applying

Lemma 3.1 to its probability term and employing the distribu-

tive law as follows:

P
∗
L(m,K) ≥

L
∏

j=1

∑

hj

(

K
hj

)(

N−K
mj−hj

)

(

N
mj

) P(mj−hj ,K−hj). (31)

The bound (28) can now be obtained by substituting (31) into

(29).

Bound (28) will be investigated in Section IV-B, where we

will show that it is sufficiently tight even for binary codes and

small values of PER.

C. Computational Complexity Consideration

Comparing bounds (17) and (28) for non-systematic and

systematic codes, it can be observed that the former is signif-

icantly more complex than the latter, especially if the number

of users L is large. In this section, we show how the calculation

of bound (17) in the non-systematic case can be optimised.

Consider the outermost summation in (17), which is per-

formed over L variables contained in tuple m, with each

variable taking values from K to N . As a result, the number

of terms in the summation is equal to (N −K + 1)L, which

makes (17) computationally prohibitive if the number of users

L is large. At the same time, it can be observed that αL(·)
and PL(·) in (17), the most computationally intensive terms,

do not depend on the order of elements within m. Thus, the

number of times these terms are calculated can be significantly

reduced as follows.

Let us rewrite relation (17) as follows:

PL(ǫ) ≥
∑

m
′





∑

π(m′)

ϕL(m, N, ǫ)





·
∑

µ

αL(m
′, µ;N)P̃L(m

′, µ;K), (32)

where the outer summation is now performed over all possible

combinations m′ of L values from K to N with no reference

to order, and π(m′) denotes a permutation of m′. The problem

of calculating the number of possible combinations of L values

from K to N can be recast as that of finding the number of

ways to place L balls into N−K+1 urns. Indeed, a particular

combination m
′ is equivalent to one way of assigning each

of the N − K + 1 values (urns) a non-negative number of

occurrences (balls) Li, i = 1, . . . , N −K + 1, so that

N−K+1
∑

i=1

Li = L. (33)

The number of solutions to (33), and hence the number of

terms in the outer summation in (32), can be found using the

stars and bars principle [32] and is equal to
(

N −K + 1 + L− 1

L

)

=

(

N −K + L

L

)

. (34)

This number is much smaller than (N −K+1)L, the number

of terms in the outer summation in the original expression

(17), as illustrated in the following example.

Example 3.3: Let L = 4 and N −K = 10. Based on (34),

the number of terms in the outer summation in (32) is equal to
(

14
4

)

= 1001, which is 14.6 times smaller than 114 = 14641,

the number of terms in the outer summation in the original

expression (17). As a result, the number of times αL(·) and

PL(·) are calculated is significantly reduced compared with the

original expression. Clearly, the reduction factor will increase

with L.

Further complexity reduction can be achieved in the case

of a homogeneous network, in which each user has the same

PER ǫ = ǫj for j = 1, . . . , L. In this case, (32) simplifies to

PL(ǫ) ≥
∑

m
′

ϕ′
L(m

′, N, ǫ)σ(m′)

·
∑

µ

αL(m
′, µ;N)P̃L(m

′, µ;K), (35)

where

ϕ′
L(m

′, N, ǫ) = (1− ǫ)
∑

m
′

ǫLN−
∑

m
′

(36)

and σ(m′) =
∑

π(m′) is the number of permutations of a

particular combination m
′ of L values from K to N . This

number depends on a particular solution to (33) and can be

calculated as follows:

σ(m′) =
L!

∏N−K+1
i=1 Li!

. (37)

To further speed up calculation, probabilities P(·) and

P
(i)(·), which are used repetitively in the calculation of P̃L(·),

can be pre-computed offline for a given (N,K, q) code and

stored in a look-up table.
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TABLE II
NETWORK AND CODE PARAMETERS USED TO EVALUATE THE ACCURACY

OF THE PROPOSED BOUNDS.

Parameter Values

Number of users L {2, 6, 10}
PER ǫ {0.01, 0.1}

Number of source packets K {5, 10, 15, 20}
Number of transmissions N {K,K + 1, . . . ,K + 10}

Finite field size q
{

2, 28
}

IV. NUMERICAL RESULTS

In this section, we investigate the performance of a multi-

cast network under non-systematic and systematic RLNC via

simulation and compare the results with the derived theoretical

bounds. Simulation results in terms of probability of successful

delivery were obtained using the Kodo C++ network coding

library [33] and the Monte Carlo method, with each point

being the result of an average over 105 iterations. The results

are compared for various combinations of network and code

parameters, as summarised in Table IV. The accuracy of the

bounds is evaluated in terms of Mean Square Error (MSE) for a

given combination of L, ǫ, K and q over the range of numbers

of transmissions N . Unless otherwise stated, a homogeneous

scenario is assumed, in which each user experiences the same

PER ǫ.

A. Non-systematic RLNC

We start with a multicast network operating under a binary,

non-systematic code corresponding to q = 2. Specifically, we

compare the proposed bound (17) against bound (5) used in

the literature for large field sizes. In addition, we benchmark

both bounds against simulated results.

Fig. 1 shows the probability of successful delivery PL(ǫ)
to L ∈ {2, 6, 10} users as a function of the number of coded

transmissions N . The number of source packets is fixed to

K = 5 and two PER values common to all users are consid-

ered: ǫ = 0.01 and 0.1. The latter value of ǫ is commonly used

in practice as the maximum acceptable PER. For instance,

in 3GPP’s LTE-A systems, the link adaptation mechanism

typically switches the modulation and coding scheme once the

transport block error rate reaches 0.1 [31], [34]. Therefore, this

value of PER can be thought of as a worst-case scenario. It

can be observed that the proposed bound as per (17) provides

better approximation than bound (5). Specifically, bound (17)

is particularly accurate for ǫ = 0.01, where it matches the

simulated results for L = 2 (MSE = 2 · 10−6) and closely

follows them when L ∈ {6, 10} (MSE = 8 ·10−6 and 9 ·10−5,

respectively). The tightness of the proposed bound in this

scenario is explained by a large number of packets likely to be

received simultaneously by all users. Indeed, when ǫ is small,

the probability that a single transmitted packet is received by

all users, which is equal to (1 − ǫ)L, is large. This leads to

a high correlation between the users coding matrices. This is

in contrast with the traditional bound (5), which does not take

into account commonly received packets. As a result, bound

(5) is particularly loose when ǫ is small, with the absolute gap

from the simulated results being up to 0.58 when L = 10
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(a) ǫ = 0.01
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(b) ǫ = 0.1

Fig. 1. Probability of successful delivery for a binary non-systematic code
as a function of N for K = 5 and L ∈ {2, 6, 10}.

and N = 7, in contrast with 0.016 for the new bound. At the

same time, as ǫ or L increase, the probability that a packet

will be received by all users decreases, so the accuracy of the

proposed bound decreases too, as can be observed for ǫ = 0.1
and L = 10 (MSE = 0.01). We reiterate, however, that bound

(17) is exact for L = 2 and any ǫ, as per Remark 3.3.

Fig. 2 illustrates the results for the same scenario as in

Fig. 1, but this time for different numbers of source packets

K ∈ {5, 10, 15, 20} and a fixed number of users L = 6.

In line with the previous results, the proposed bound (17)

closely follows the simulated performance at ǫ = 0.01,

exhibiting the MSE of 8 · 10−6, 6 · 10−5, 1 · 10−4 and

3 · 10−4 for K ∈ {5, 10, 15, 20}, respectively. The new bound

is significantly more accurate than bound (5) at ǫ = 0.01,

with the latter having the MSE of up to 7 · 10−2. It can

be observed that for this PER, the accuracy of the proposed

bound somewhat decreases as K grows. The reason is that

longer source messages require more coded transmissions,

which leads to a higher number of packet erasures for a given

PER. As a result, the correlation between the users coding

matrices reduces for larger K , which means a smaller number

of packets received simultaneously by all users. For the same

reason, it can be observed from Fig. 2 that the gap between the

simulated results and bound (5) becomes smaller as K grows.

For example, for ǫ = 0.01, the maximum gap between bound
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(b) ǫ = 0.1

Fig. 2. Probability of successful delivery for a binary non-systematic code
as a function of N for L = 6 and K ∈ {5, 10, 15, 20}.

(5) and the simulated results reduces from 0.5 for K = 5
(N = 7) to 0.4 for K = 20 (N = 22). Fig. 2b demonstrates

that both bounds are close to the simulated results for the

worst-case scenario in terms of PER, especially when K = 20
– MSE = 9 · 10−4 and 8 · 10−4 for bounds (5) and (17),

respectively. It should be noted, however, that due to the

high decoding complexity of non-systematic RLNC [13], K is

likely to be small in practice, and in this regime the proposed

bound (17) is noticeably more accurate (MSE = 3·10−3 when

K = 5) than (5) (MSE = 1.4 · 10−2 for the same value of K)

even if ǫ is high.

The results so far were collected for a homogeneous net-

work, in which each user has the same PER ǫ. It is also relevant

to verify the performance of the bounds for a more general

case of a heterogeneous network, in which users have distinct

PERs. To this end, we allocate L unique PER values from

0.01 to 0.1 with a constant step equal to 0.99/(L− 1), which

is equivalent to a set of users placed on the symmetry axis

of a cellular cell sector [35]. Fig. 3 compares the bounds and

simulated results for such network, for the same values of L
and K as in Fig. 1. It is clear that the proposed bound (17) is

significantly more accurate than (5) even for L = 10, with the

maximum absolute gap between the two bounds being 0.17,

0.24 and 0.19 for L = 2 (N = 6), L = 6 (N = 7) and

L = 10 (N = 8), respectively.

Number of transmissions N
5 6 7 8 9 10 11 12 13 14 15

P
ro
b
ab

il
it
y
of

su
cc
es
sf
u
l
d
el
iv
er
y
P
L
(ǫ
)

0

0.2

0.4

0.6

0.8

1

L = 2, sim.

L = 2, bound (5)

L = 2, bound (17)

L = 6, sim.

L = 6, bound (5)

L = 6, bound (17)

L = 10, sim.

L = 10, bound (5)

L = 10, bound (17)

Fig. 3. Probability of successful delivery for a binary non-systematic code
as a function of the number of transmissions N for the case when each user
has a unique PER from 0.01 to 0.1, for L ∈ {2, 6, 10} and K = 5.
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Fig. 4. Probability of successful delivery for a non-binary (q = 28), non-
systematic code as a function of the number of transmissions N for L ∈
{2, 6, 10}, ǫ ∈ {0.01, 0.1} and K = 5.

Remark 4.1: Comparing with Fig. 1, it can be observed that

the gap between the proposed bound and simulation results

is larger than when each user has ǫ = 0.01, but smaller than

when each user has ǫ = 0.1. This is an expected result, since

the users have varying PERs between those two values. Still,

we observe that the correlation effect given by the number µ
of packets received simultaneously by all the users is relevant

and accounting for this makes our bound (17) tighter than (5).

Finally, Fig. 4 compares the bounds and simulated results

for a non-binary, non-systematic code. A relatively large field

size, q = 28, is selected, in which the traditional bound (5) is

expected to be accurate. It can be observed that while bound

(5) closely follows the simulated performance when L = 2
(MSE = 10−6), it somewhat diverges from the simulated

results at small N for a larger number of users and ǫ = 0.01:

for N = 5, the absolute gap is 0.01 and 0.02 for L = 6 and 10,

respectively. It is expected that the deviation of bound (5) will

grow further when L is increased beyond 10. In other words,

bound (5), traditionally used in the literature, has a noticeable

approximation error, that grows with L, even for a large field

size. By contrast, the proposed bound (17) is clearly more

accurate when ǫ = 0.01, with the largest deviation from the

simulated results (corresponding to L = 10 and N = 5) being
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Fig. 5. Probability of successful delivery for a binary systematic code
as a function of the number of transmissions N for L ∈ {2, 6, 10},
ǫ ∈ {0.01, 0.1} and K = 5.

2 · 10−3, 10 times lower than that of bound (5). As regards

ǫ = 0.1, both bounds accurately describe the performance,

with the worst-case MSE (corresponding to L = 10) equal to

8 · 10−4 and 7 · 10−4 for bound (5) and (17), respectively.

To summarise, the proposed bound (17) for non-systematic

RLNC is tighter than the existing bound (5) traditionally

used in the literature. The difference between the bounds is

especially profound in realistic channel conditions, when users

have small values of PER.

B. Systematic RLNC

We now turn our attention to a multicast network operating

under systematic RLNC, the performance bound for which

was proposed in Theorem 3.2. In this scenario, the first K
transmissions are the original source packets, followed by

coded, non-systematic packets. Fig. 5 compares bound (28)

with simulated performance for various numbers of users L
and PER ǫ. The number of source packets K is fixed to 5.

It can be observed that the bound is accurate when ǫ = 0.01,

with the MSE of 4 · 10−7, 7 · 10−7 and 2 · 10−6 for L = 2,

6 and 10, respectively. This is in contrast with the same

bound applied to non-systematic RLNC (5), which exhibited

significant inaccuracy at small PER. Such behaviour of bound

(28) at small ǫ was predicted in Section III-B and explained

by the high probability that each user receives all K source

packets. Even when ǫ = 0.1 and L = 10, the vertical gap

between the bound and simulated results is relatively small:

up to 7 · 10−2 for N = 8, compared to 0.58 in the non-

systematic case. This phenomenon was again predicted in

Section III-B and is due to the fact that the correlation between

the users coding matrices arises from the non-systematic

packets only, the number of which is smaller than the total

number of transmissions. Due to the tightness of bound (28)

for both considered PER values, the results for a heterogeneous

scenario, in which every user has a distinct PER, are omitted.

By analogy to Fig. 2 for non-systematic RLNC, Fig. 6

illustrates the performance results for the systematic case, for

fixed L = 6 and variable K , for two values of PER ǫ. The

bound provides close approximation for all K at ǫ = 0.01:

the MSE ranges from 7 · 10−7 (for K = 5) to 5 · 10−6
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Fig. 6. Probability of successful delivery for a binary systematic code as a
function of the number of transmissions N for L = 6, ǫ ∈ {0.01, 0.1} and
K ∈ {5, 10, 15, 20}.
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Fig. 7. Probability of successful delivery for a non-binary q = 28, systematic
code as a function of the number of transmissions N for L ∈ {2, 6, 10},
ǫ ∈ {0.01, 0.1} and K = 5.

(for K = 20). At the same time, a small deviation can be

observed when ǫ = 0.1, which decreases as K becomes larger

– the MSE drops from 4 · 10−4 (for K = 5) to 9 · 10−5 for

(K = 20). The deviation can be explained by a larger influence

of the correlation between the users coding matrices when ǫ is

high, which is not taken into account by the proposed bound.

The deviation reduction as K increases is due to a decreasing

amount of correlation, as in the case of non-systematic RLNC.

Finally, Fig. 7 demonstrates the performance results for a

systematic non-binary code, corresponding to q = 28. The

accuracy of the bound can be observed for all considered

values of L and ǫ, with the worst-case MSE (corresponding to

L = 10) equal to 4 · 10−7 and 2 · 10−7, for ǫ = 0.01 and 0.1,

respectively. We note that the results in Fig. 7 are similar to

those shown in Fig. 4 for a non-systematic code. Indeed, when

the field size is large, the probability of successful delivery in

both cases can be closely approximated by the probability of

each user collecting at least K packets, which does not depend

on the nature of the code.

All in all, it can be concluded that for systematic RLNC,

bound (28) is sufficiently tight for most considered combina-

tions of K , L, ǫ and q, with a small deviation occurring when

K = 5, L ≥ 6 and ǫ = 0.1.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the issue of calculating

the probability of successful delivery in a multicast network

operating under RLNC. In contrast with the previous studies

focused on specific network or code parameters, we considered

the most general scenario of arbitrary number of users and

finite field size, as well as realistic channel conditions. In

addition to the traditional, non-systematic form of RLNC, we

have also considered the systematic version.

For non-systematic RLNC, we proposed a novel lower

bound for the probability of successful delivery, which takes

into account a limited finite field size and potential correlation

between the users. This is in contrast with the bound tradi-

tionally used in the literature, which assumes an infinite or

sufficiently large field size and independence between subsets

of packets received by each user. For systematic RLNC, how-

ever, we argued that the correlation effect between the users

is negligible, and the traditionally used bound is sufficiently

tight.

The accuracy of the considered bounds was thoroughly

investigated via Monte Carlo simulations for various combina-

tions of network and code parameters. In the non-systematic

scenario, it was demonstrated that the proposed bound is

significantly more accurate than the traditional bound used in

the literature. The accuracy of the new bound was shown to

be especially high at low PER, exhibiting an MSE of 9 · 10−5

for a ten-user network. In contrast, the absolute deviation of

the state-of-the art bound is as large as 0.58 for the same

network. Even for a large finite field, it was shown that the

traditional bound deviates from the simulated results, while

the proposed bound is up to 10 times more accurate. In

particular, this holds true in scenarios where the multicast

users experience heterogenous PERs. In the systematic case,

the considered bound was shown to be sufficiently tight for

most configurations, with a small deviation occurring at high

PER and small message size. By examining the accuracy of

the bounds, we provided a unique insight into the selection of

code parameters for various network configurations.

The considered bounds for the probability of successful de-

livery could be used to obtain other performance metrics, such

as the average decoding delay or energy efficiency. In addition,

the derived results can be utilised in the analysis of other

network topologies, such as relay networks. To improve the

utility of the bounds, a further reduction in their complexity,

especially in the non-systematic case, can be investigated.

APPENDIX A

PROOF OF LEMMA 3.1

Let Aj , j = 1, . . . , L, denote an event corresponding to

matrix Cj being full rank. Using this notation, (14) can be

rewritten as

Pr





L
⋂

j=1

Aj



 ≥

L
∏

j=1

Pr [Aj ] . (38)

We first show that (38) is valid for L = 2. Consider the

two matrices in question, C1 and C2. Using the notation of

Section III, let µ denote the number of common rows in these

matrices. Let also X denote a matrix formed by those rows.

The joint probability of both matrices being full rank can be

expressed as follows:

Pr[A1 ∩ A2] =
∑

i

Pr[rank(X) = i, A1 ∩ A2], (39)

where the maximum value of the summation index i is limited

by min(µ,K). Let Z be a random variable representing the

rank of X, so that both matrices are full rank. Therefore, (39)

can be thought of as the Cumulative Distribution Function

(CDF) of µ, F (µ):

Pr[A1 ∩ A2] =
∑

i

Pr[Z = i] = Pr[Z ≤ µ]. (40)

Since the CDF is a non-decreasing function, it follows that its

minimum value corresponds to µ = 0, for which the matrices

are independent from each other. Hence,

Pr[A1 ∩ A2] ≥ F (0) = Pr[A1] Pr[A2], (41)

which proves (38) for L = 2.

For L > 2, the left-hand side of (38) can be expressed based

on the chain rule as follows:

Pr





L
⋂

j=1

Aj



 = Pr



AL

∣

∣

∣

∣

L−1
⋂

j=1

Aj



 · Pr



AL−1

∣

∣

∣

∣

L−2
⋂

j=1

Aj



 · . . .

·Pr [A2|A1] · Pr[A1]

=

L
∏

l=1

Pr



Al

∣

∣

∣

∣

l−1
⋂

j=1

Aj



 . (42)

From (41), it follows that

Pr[A2|A1] =
Pr[A1 ∩ A2]

Pr[A1]
≥ Pr[A2]. (43)

Consider now the term in the product (42) corresponding to

l = 3, Pr[A3|A1 ∩ A2]. It can be expressed as follows:

Pr[A3|A1 ∩ A2] =
Pr[A3 ∩ A2|A1]

Pr[A2|A1]
. (44)

From (41), it follows that

Pr[A3 ∩ A2|A1] ≥ Pr[A3|A1] Pr[A2|A1]. (45)

Substituting this into (44) leads to

Pr[A3|A1 ∩ A2] ≥ Pr[A3|A1] ≥ Pr[A3]. (46)

Using the same logic, it is straightforward to show

that if Pr[Al−1|
⋂l−2

j=1 Aj ] ≥ Pr[Al−1] holds, so does

Pr[Al|
⋂l−1

j=1 Aj ] ≥ Pr[Al−1]. Indeed,

Pr



Al|

l−1
⋂

j=1

Aj



 =
Pr

[

Al ∩ Al−1|
⋂l−2

j=1 Aj

]

Pr
[

Al−1|
⋂l−2

j=1 Aj

]

≥ Pr



Al|

l−2
⋂

j=1

Aj



 ≥ Pr[Al]. (47)

As a result, every term in the product (42) is lower-bounded

by the corresponding marginal probability, which leads to (38)

and proves the lemma. �
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timized network-coded scalable video multicasting over eMBMS net-
works,” in Proc. of IEEE ICC 2015, pp. 3069–3075, June 2015.

[31] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution.
John Wiley & Sons, 2011.

[32] W. Feller, An Introduction to Probability Theory and Its Applications,

Vol. 1. Wiley, 3rd ed., 1968.
[33] M. V. Pedersen, J. Heide, and F. H. P. Fitzek, Kodo: An Open and

Research Oriented Network Coding Library., vol. 6827 of Lecture Notes

in Computer Science, pp. 145–152. Springer, 2011.
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