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Abstract—Future Connected and Automated Vehicles (CAV),
and more generally ITS, will form a highly interconnected system.
Such a paradigm is referred to as the Internet of Vehicles (herein
Internet of CAVs) and is a prerequisite to orchestrate traffic flows
in cities. For optimal decision making and supervision, traffic
centres will have access to suitably anonymized CAV mobility
information. Safe and secure operations will then be contingent
on early detection of anomalies. In this paper, a novel unsuper-
vised learning model based on deep autoencoder is proposed to
detect the self-reported location anomaly in CAVs, using vehicle
locations and the Received Signal Strength Indicator (RSSI) as
features. Quantitative experiments on simulation datasets show
that the proposed approach is effective and robust in detecting
self-reported location anomalies.

Keywords—anomaly detection, deep neural network, autoen-
coder, connected and autonomous vehicles (CAV), Intelligent
Transportation Systems (ITS)

I. INTRODUCTION

The past decades have witnessed rapid developments in
Intelligent Transportation Systems (ITS). Connected and Au-
tonomous Vehicles (CAV) are an integral part of ITS and will
redefine mobility, change the existing vehicle usage and pave
the way for future transportation services. Vehicles collect the
necessary information via a number of onboard sensors. This
information is later disseminated to the surrounding environ-
ment in a Vehicle-to-Everything (V2X) fashion, negotiating
manoeuvres and building a more agile, safe and efficient traffic
network [1].

Without constant human supervision, the safety of CAVs
heavily relies on the knowledge acquired from the connected
surrounding environment [2]. However, this dependence of
exchanged data brings into the surface several security risks
and potential malicious cyberattack. The connected nature of
the vehicles increases the risk of compromised vehicles on the
road, and thus the demand for more sophisticated anomaly
detection and cybersecurity protection techniques. In this
work, we will focus on CAVs that maliciously exchange their
falsified self-reported locations to the surrounding vehicles,
presenting a novel way of detecting and counteracting on the
abnormalities.

Anomaly detection is the identification of abnormal ob-
servations that do not conform to the expected behaviour.
Ultimately, the goal is to present a quick and reliable alert

when an anomaly occurs, helping the system to respond
accordingly. Particularly for CAVs, it plays a crucial role
in system malfunction detection, intelligent operations and
cybersecurity protection. Growing efforts have been put into
this area during the past years. For example, [3], [4] introduced
intrusion detection methods for CAVs using deep learning
and discriminant analysis. Additionally, [5] proposed a CAV
misbehaviour detection method for service management.

In this paper, we develop a deep autoencoder approach
for anomaly detection in CAVs. As an unsupervised method,
autoencoders are capable of finding the latent patterns of data.
It is generally accepted that most of the research activities in
this area are carried out using synthetic datasets, generated by
means of simulation frameworks [6]. Similarly, in our work,
we will train and validate our deep autoencoder model using
anomalous-free data, generated using OMNeT++ network sim-
ulator [7]. Later on, we introduce different abnormalities on
our test dataset in order to evaluate the validity of our model.

The rest of this paper is organized as follows. Section II
presents our problem description and our deep autoencoder
approach to detect anomalies. Section III gives more insights
about the generation of our synthetic dataset, the tools used
for that and the details about our scenario. Section IV presents
the results and our analysis. Finally, Section V concludes the
paper summarizing our findings.

II. METHODOLOGY

A. Problem Statement

We consider a system where CAVs exchange beacons on a
periodic basis. Also, we assume that anomalies are presented
within the information encapsulated in the beacon frames,
and more specifically at the self-reported CAV locations. The
falsified information is then received by other surrounding
CAVs or infrastructure network. Fig. 1 gives a brief summary
of the anomaly scenario considered in this paper. The fake
position reported from the “ghost” transmitter T ′ could be due
to sensor malfunction in the actual transmitter T , or a possible
information hacking during the transmission. The detection of
self-reported location anomaly could further help with the root
cause analysis and decision making in CAVs.

We aim to design a self-learning process for detecting
the self-reported location anomalies. To do so, the Received



Fig. 1: Self-reported location anomaly in CAVs. Here T is the
transmitter in its real location, while T ′ is “ghost” transmitter.
R, being the receiver, receives the beacon from T with the
faulty location of T ′.

Signal Strength Indicator (RSSI) is chosen as a proxy for
the distance separation between two CAVs. The RSSI rep-
resents the beacon’s signal strength and it is dependent on
the maximum broadcasting power, the antenna gains, and the
attenuation from the channel and the distance. RSSI has been
widely used for indoor localization [8]–[10], human activity
recognition [11] and movement tracking [12] in wireless
networks. For CAVs, when a packet is received, the RSSI
along with the transmitter-reported locations and the receiver
self-location could form a strong state description for the self-
reported location anomaly detection.

For our system, we will consider the RSSI between the
different pairs of CAVs exchanging beacons in a Vehicle-to-
Vehicle (V2V) fashion. As shown in Fig. 1, T and R are the
real transmitter-receiver pair, while T ′ is a “ghost” transmitter.
Locations of T , R, and T ′ are represented as lT , lR and lT ′ ,
respectively. The distance between each pair of T , R and T ′

are DT,R, DT,T ′ and DT ′,R, respectively.

B. The Deep Autoencoder Approach

We design a Deep Autoencoder (DAE) for CAV self-
reported location anomaly detection in an unsupervised man-
ner. Autoencoders are a special type of artificial neural net-
work, encoding high-dimensional data into a latent space by
replicating the input in the output [13]. The idea for training a
DAE for anomaly detection is to feed anomaly-free data into
the network so it can learn the anomaly-free manifold and the
corresponding latent space. Once the model has learned the
anomaly-free manifold for a specific task, the error between
the DAE input and output would be a strong indicator for
recognizing anomalous samples.

Here we use a seven-layer, fully-connected autoencoder
structure, as shown in Fig. 2. Note that the first hidden layer
H1 has more neurons than the input layer L1 in our model.
L1 can be seen as a data interpolation layer, which helps
the model to learn the proper latent space. Symmetrically,
the output layer L2 transfers the interpolated data into its
original dimension. Hidden layers H1 to H5 build the standard
DAE structure, with a latent space L ∈ R1×20. The activation
function is discarded at the bottleneck H3 and the output layer

Fig. 2: The seven-layer, fully-connected deep autoencoder
structure designed in this paper.

L2. Dropout is not used in our model.
1) Training: As mentioned in Sec. II-A, the location of

the receiver lR ∈ R1×2, the self-reported transmitter location
lT ∈ R1×2 (when there is no anomaly during transmission) or
lT ′ ∈ R1×2 (when anomaly happens), along with the RSSI
value VRSSI form the feature set for self-reported location
anomaly detection in CAVs. During training, anomaly-free
samples X = [lR, VRSSI, lT ] ∈ R1×5 are fed to the DAE.
The model is trained by minimizing the loss function Lt:

min
Θ

Lt(Θ) = ||X −X ′||2 (1)

Here X ′ is the output of the DAE, and Θ represents the
parameters. The goal is to train the DAE generating X ′ close
to X . Gradient descent optimization is used for training this
model, with the learning rate of 0.00095.

2) Validation: To validate the performance of the trained
DAE, the anomaly-free data is split into the training set and
validation set with the proportion of 0.8 and 0.2, following the
same data distribution. During validation, samples from the
validation set are fed into the trained model. The validation
loss is calculated as:

Lv = ||Xv −X ′v||2 (2)

Since DAE is an unsupervised method, here we introduce the
adjusted mutual information (AMI) score [14] to evaluate the
relation between Lt and Lv . It gives an unbiased evaluation
of our trained model. The mean value and variance of Lt and
Lv are also calculated. Results are shown in Table I. Though
the mean values and variances of two loss distributions are
slightly different, they can be considered as nearly identical
in the context of AMI.

TABLE I: Model evaluation by testing

AMI Mean value Variance

Training loss 1.0 4.11× 10−5 8.13× 10−9

Testing loss 5.37× 10−5 5.36× 10−9

3) Anomaly Detection: After the DAE model is well-
tuned and validated, it can be applied for anomaly detection.
Potential anomalous samples Y go through the DAE, with an



output Y ′. The difference between Y and Y ′ can then be used
for anomaly detection, while Lt and Lv serve as references.

III. DATA GENERATION

For this particular work, we assume that each vehicle
generates one beacon per second. Each beacon is encapsulated
in a UDP packet with a total length 140 B. Each UPD packet
is broadcast in the network to the surrounding vehicles. We
choose a 2 km× 2 km area in central Bristol, UK as our
simulation scenario. The number of vehicles within our system
is constant (always 150 vehicles). To simulate our scenario, we
used OMNeT++ [7] and our modified INET framework [15].
The vehicles mobility traces were generated using SUMO
traffic generator [16] and parsed within our framework. Our
INET framework was further modified with a logging interface
that logs all the packets generated, transmitted and received, in
a space-separated file format. These traces will be later used
for our anomaly detection algorithm.

In particular, at the transmitter (TX) side, we find
at first the wireless interface ID (e.g., ScenarioWork-
ing.node[1].wlan[0].radio), followed by the node ID (e.g.,
“1” for the TX example). For this work, we assumed that all
the vehicles are equipped with one IEEE 802.11p transceiver,
operating at the frequency band of 5.9 GHz. The next entry is
the packet ID, i.e. “UDPData-50 1027”, used to reconcile the
transmitted with the received packets. UDPData-50 is the data
structure called Signal within INET, that represents the physi-
cal phenomena of transmitting a packet. The number following
the signal is the sequence number of the event generated in
INET. Start fields represent the timestamp that the UPD packet
started being transmitted (in seconds), followed by the position
of the vehicle in space (given in meters). SUMO, when parses
a real-world map, converts all the geolocation coordinates into
a Cartesian plane with the southern-west map corner being
the origin of the Euclidean space. Similarly, End shows the
timestamp that the transmission was over, followed by the
position of the vehicle on that particular time.

The logging of each packet at the RX side follows a similar
structure. Again we find the wireless interface ID followed
by the node ID, the packet ID and the starting and ending
timestamp of the reception as well as the positions of the
RX vehicle. On top of that, our logging interface saves the
RSSI of all the received packets (as it is being calculated
within the INET framework). In order to calculate the RSSI
for each packet, we take into account the building layout
and the position of the vehicles. A scalar radio medium was
chosen for our configuration, meaning that the analog signal
power is represented with a scalar value over frequency and
time. As a path loss model, we chose Rician Fading with a
path loss exponent α = 2.4 and a Rician K-factor equal to
k = 8 dB. Finally, the obstacle loss model chosen was the Di-
electricObstacleLoss. This model calculates the dielectric and
reflection loss along the straight path considering the shape,
the position, the orientation, and the material of obstructing
physical objects. The rest of our simulation parameters can be

TABLE II: Simulation Parameters.

Parameter Value
Simulation Time 1800 s

Carrier Frequency 5.9 GHz
Bandwidth 10 MHz

Path Loss Model Rician Fading
Path Loss Exponent α 2.4

Rician K-factor k 8 dBm
UDP Packet Length 140 B

UDP TX Interval 1 s
TX Power 27 dBm

TX/RX Antenna Gain 9 dBi
TX/RX Modulation QPSK
RX Sensitivity Sth −88 dBm

SNIR Threshold SNIRth 10 dB
Background Noise N (−110, 3) dBm

Connector and Cable Losses 3 dBm

found in Table II. Also, the reasoning for choosing this setup
was derived from the performance investigation in [17].

A UDP packet is considered as deliverable under the
following conditions. At first, the RSSI is compared with
the sensitivity threshold Sth for the chosen Modulation and
Coding Scheme (MCS). When the RSSI is lower than Sth, it
is considered as non-deliverable. If the RSSI is above the Sth,
then it is compared with the Signal-to-Noise-plus-Interference
(SNIR) threshold SNIRth. When below that, the packet is
always considered as non-decodable due to errors introduced
from the channel. The last case is when the RSSI is greater
than the SNIRth. For that, a Packet Error Rate (PER) value
is calculated based on the current SNIR. This value is later
compared with a random number chosen from a uniform
random distribution and if it is greater, the packet is considered
as delivered. All the successfully received packets are logged
in the dataset. These RX entries can then be reconciled with
the transmitted ones using the combination of the values found
at the packet ID (signal and sequence number), as mentioned
above.

IV. RESULTS AND DISCUSSIONS

To evaluate the proposed algorithm, an information hacking
process has been imitated. More specifically, we consider a
number of CAVs as hacked and force them to report random
wrong locations. In this process, the inaccessible areas for
CAVs, like buildings, grass-areas and rivers are avoided to
increase the reasonableness of samples. Anomalous samples
have the format of [lR, VRSSI , lT ′ ], while normal samples are
[lR, VRSSI , lT ] without hacking. Here lT ′ is CAV-accessible
locations in our simulation area. Anomaly detection is carried
out for each received packet.

To conduct quantitative evaluation, anomalous samples are
classified into 8 datasets by DT,T ′ . Table III shows the details
of each anomaly dataset, with the corresponding DT,T ′ range
and mean values. Besides, the one-class Support Vector Ma-
chine (SVM) method has been introduced for comparison [18].
One-class SVM is an unsupervised learning approach for
novelty and outlier detection. By estimating the support of
a high-dimensional distribution, the unknown data can be



classified as inliers or outliers. Here the one-class SVM can
be seen as a benchmark for the location anomaly detection
problem.

TABLE III: Anomaly datasets (AD) (distance unit:m)

Number of samples DT,T ′ DT,T ′

AD1 1000 [0,10) 7.16
AD2 1000 [10,20) 15.77
AD3 1000 [20,30) 27.30
AD4 1000 [30,40) 35.70
AD5 1000 [40,50) 46.43
AD6 1000 [50,100) 78.94
AD7 1000 [100,500) 347.42
AD8 1000 ≥ 500 711.12

A. Results

The performance of the anomaly detection model proposed
in this paper is depicted with the Receiver Operating Charac-
teristic (ROC) curve, along with the area under curve (AUC)
value. ROC curve plots the correspondence between the False
Positive Rate (FPR) and the True Positive Rate (TPR) over
all possible classification thresholds. The data generated in
Sec. III serves as an anomaly-free baseline.

Fig. 3 shows the detection results for AD1 to AD8, with
AUC values in the right bottom of each subfigure. The
diagonal black dash lines show where FPR = TPR. If the
ROC curve falls along the diagonal line, the result is evaluated
as no better than the random classification, where the AUC
would be 0.5. From Fig. 3(a) we see the scenario where
the faulty location lT ′ is close to the real location lT , i.e.,
DT,T ′ < 10 m. For that case, the chance to detect an anomaly
almost equals to a random chance for both SVM and DAE.
Under this situation, RSSI is not enough for self-reported
location anomaly detection. When DT,T ′ reaches 20 m, the
detection rate is clearly boosted for DAE. When DT,T ′ is
larger than 30 m, there is a very good chance to detect
anomalies with low FPR using DAE method. When the ghost
vehicle T ′ is 100 m away from T , the detection rate for DAE
is nearly 100%, clearly better than SVM.

To further investigate how the anomaly detection perfor-
mance changes with DT,T ′ , we calculated the detection rate
when FPR = 0.2. Fig. 4 shows the detection rate when T ′ is
located in the different radius ranges of T . We can also see
that when DT,T ′ < 30 m, it is difficult to detect self-reported
location anomalies with the current model and features.

B. Transmission Direction Anomaly Analysis

According to the results in Sec. IV-A, when DT,T ′ > 30 m,
there is a very good chance to successfully detect abnormali-
ties. In this section, we investigate another factor that could in-
fluence the detection performance. Consider a situation where
DT,T ′ > k, here k is the detectable threshold. In the meantime,
|DT ′,R −DT,R| < ε, where ε is a small distance. Under such
situation, the distance between the ’ghost’ transmitter T ′ and
the real transmitter T is noticeable, while their distances to
the receiver R are very close. It can be seen as a location
anomaly, which mainly changes the data transmission direction

with the same transmission distance. We would like to test the
performance of our model in such a situation.

We generated two additional anomaly datasets, AD9 and
AD10, to study the transmission direction anomaly. In AD9,
DT,T ′ > 30 m where |DT,R − DT ′,R| < 1 m. The wrong
locations of T ′ in AD9 imitate CAVs reporting wrong trans-
mission directions. In AD10, we still have DT,T ′ > 30 m
while |DT,R−DT ′,R| ∈ [10, 20]m, for the sake of comparison.

Detection results on AD9 and AD10 are shown in Fig. 5.
In Fig. 5(a), even though DT,T ′ has reached 30m, the de-
tection performance is not satisfying comparing to Fig. 3(d)
to Fig. 3(h). The detection rate of DAE is overall lower
than the results in AD4 to AD8, with lower AUC value.
The performance of SVM in AD9 is close to a random
classification. In Fig. 5(b), the detection performance improved
as |DT,R − DT ′,R| increases. It can be seen as evidence
that the trained DAE model mainly learns the correspondence
between the transmitter/receiver distance DT,R and the RSSI.
Directional information is not learned because of the lack of
relevant features. Data from multiple sources/sensors could be
further considered for different types of anomalies.

V. CONCLUSION

In this study, we investigate the self-reported location
anomaly detection problem in CAVs. To train a self-learning
approach for anomaly detection, a deep autoencoder is de-
signed. The proposed model is trained and tested on simulation
data generated by OMNeT++, our modified INET framework
and SUMO traffic generator, in an area of Bristol, UK.

Illustrative results about the self-reported location anomaly
detection performance have been presented by only using
the transmitter/receiver location pairs and RSSI values as
features. We show that the DAE approach proposed in this
paper is capable of detecting CAV location anomaly in a
complicated scenario. We also present an insightful analysis
of the detectable range of the proposed model, as well as the
detection performance on transmission direction anomaly.

The proposed model connects unsupervised learning and
anomaly detection in CAVs. It indicates that the powerful
properties of unsupervised learning can bring benefits to future
ITSs. The DAE approach proposed in this paper can be
applied as a pre-processing step to the control centre of CAVs,
verifying the clearness and reliability of the transmitted data
before taking it to the CAV decision-making process.
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