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On Intercept Probability Minimization under
Sparse Random Linear Network Coding

Andrea Tassi, Robert J. Piechocki, and Andrew Nix

Abstract—This paper considers a network where a node wishes
to transmit a source message to a legitimate receiver in the pres-
ence of an eavesdropper. The transmitter secures its transmissions
employing a sparse implementation of Random Linear Network
Coding (RLNC). A tight approximation to the probability of
the eavesdropper recovering the source message is provided.
The proposed approximation applies to both the cases where
transmissions occur without feedback or where the reliability of
the feedback channel is impaired by an eavesdropper jamming
the feedback channel. An optimization framework for minimizing
the intercept probability by optimizing the sparsity of the RLNC
is also presented. Results validate the proposed approximation
and quantify the gain provided by our optimization over solutions
where non-sparse RLNC is used.

Index Terms—Sparse random network coding, intercept prob-
ability, physical layer security, secrecy outage probability.

I. INTRODUCTION

Due to the broadcast nature of the medium, wireless com-
munications can be vulnerable to eavesdropping. Physical
layer security strategies, operating at the lower protocol stack
layers, aim to achieve the secrecy of transmitted messages. In
partibular, an eavesdropper is prevented from recovering any
of the packets broadcast by a source node (per-packet secrecy)
by optimizing the transmission rate [1].

In this paper, we advance and compare against the frame-
work for physical layer security presented in [2], and more
recently in [3]. In particular, we refer to a system model where
achieving per-packet secrecy is not necessary if the transmitted
packets are a function of a source message intended to be
delivered to a legitimate receiver, and if, in order to recover the
source message, a receiver has to collect at least a target num-
ber of packets [4]. As observed in [2] and [3], this assumption
is met by Random Linear Network Coding (RLNC) [5], where
a source node generates a stream of coded packets by linearly
combining the source packets forming a source message. The
legitimate receiver or an eavesdropper can recover the source
message only if they successfully receive a number of linearly
independent coded packets equal to the number of source
packets defining the source message.

We secure communications by minimizing the intercept
probability – defined as the probability of an eavesdropper re-
covering the source message intended for a legitimate receiver.
Unlike [2], [3], the devised proposal applies to both the case
when the legitimate receiver does and does not acknowledge
the source the successful reception of a message. This is
achieved, by establishing our theoretical framework under the
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conditions where the transmission of acknowledgment mes-
sages takes place over a feedback channel that is not assumed
fully reliable. In particular, our performance investigation will
focus on attacks where an eavesdropper attempts to increase its
intercept probability by jamming the feedback channel – thus,
increasing the probability of the acknowledgment message
not being successfully received and forcing the source node
to keep transmitting coded packets even after the legitimate
receiver successfully recovered a source message. To avoid
that, we will show how the intercept probability can be
significantly reduced by adopting a sparse implementation of
the RLNC approach where the number of non-zero elements
in the encoding matrix is smaller than in the case of classic
RLNC [6].

In this paper, we provide the following key contributions:
• Existing expressions of the intercept probability are only

applicable to extreme cases where the legitimate receiver
either does not acknowledge to the source the successful
reception of a source message or when an acknowl-
edgment message is transmitted over a fully reliable
feedback channel. By resorting to a novel Markov chain-
based model, we propose a generic approximation of
the intercept probability that is also applicable when the
feedback channel is impaired by an arbitrary erasure
probability.

• By employing a sparse implementation of RLNC, we
devise a novel optimization strategy for optimizing the
sparsity of the code and then minimizing the intercept
probability when the feedback channel is jammed.

The rest of the paper is organized as follows. Section II
describes the considered system model. Section III presents
our novel approximation of the intercept probability and
Section IV shows how the sparsity of the code can be
optimized to minimize the intercept probability. The accuracy
of the proposed approximation and the effectiveness of our
optimization model are presented in Section V. Finally, in
Section VI, we draw our conclusions.

II. SYSTEM MODEL

We consider a system model where a node (Alice) wishes to
transmit to a legitimate receiving node (Bob) a source message
in the presence of an eavesdropper (Eve), over a broadcast
channel. Bob and Eve experience a packet error probability
equal to εB and εE, respectively.

We assume that the packet erasures experienced by Bob and
Eve occur as statistically independent events and, based on a
general condition for physical layer security over a Wyner’s
wiretap channel model [7, Chapter 1], εB ≤ εE [8].

Remark 2.1: It directly follows from [2], [3] that, for
εB > εE, the average number of coded packet successfully
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received by Bob is smaller than that received by Eve –
thus, the average number of coded packet transmissions that
Eve needs to recover a source message is inevitably smaller
than the number of coded packets Bob needs to recover a
source message. That is, for εB > εE, the secrecy capacity
of a multicast or broadcast communication system cannot
be improved by only employing strategies based on rateless
codes. Thus, alternative physical layer security techniques
achieving per-packet secrecy have to be used. The investigation
of scenarios where εB > εE are beyond the scope of this paper.

Alice segments the source message into K source packets
and linearly combines at random the source packets to obtain
N̂ coded packets for transmission according to the sparse
RLNC principle defined as follows.

Definition 2.1: Each coded packet cj is obtained as cj =∑K
i=1 gi,j · si, where gi,j follows the following probability

law [6]:

P (gi,j = v) =

 p if v = 0
1− p
q − 1

otherwise, (1)

where 1
q < p < 1 and q is the size of the finite field Fq

over which network coding operations are performed. The
bigger p, the more likely that gi,j is equal to 0. Thus, the
average number of source packets concurring in the generation
of a coded packet is a function of p. Classic RLNC assumes
p = 1

q [9].
Let nB and nE be the number of coded packets successfully

received by Bob and Eve, for 0 ≤ nB ≤ N̂ and 0 ≤ nE ≤
N̂ , respectively. Column by column, Bob and Eve populate
a K × nB and a K × nE decoding matrix MB and ME,
respectively, with the coding vectors associated with the coded
packets they successfully received. Bob and Eve recover the
source message as soon as the defect of the decoding matrix,
defined as def(MX) = K − rank(MX) is equal to zero, for
X = B and X = E, respectively [5].

As soon as the source message has been successfully
recovered, Bob transmits an acknowledgment message to Alice
over a feedback channel. Alice stops broadcasting coded
packets as soon as the feedback is successfully received or
when N̂ > K coded packets have been broadcast. The
acknowledgment message is re-transmitted when Bob detects a
new coded packet transmission pertaining to a source message
that Bob has already recovered. The detection of new packet
transmissions is assumed to be fully reliable. The feedback
channel is assumed independent and separated from the broad-
cast channel used to transmit coded packets. The erasures
of acknowledgement messages occur with probability εK, for
0 < εK ≤ 1.

III. PERFORMANCE ANALYSIS

We derive the probability of Eve recovering the source mes-
sage, i.e., the intercept probability, by means of the Markov
chain M (shown in Fig. 1) where its states are defined as
follows.

Definition 3.1: We say that M is in state (dB, dE, δ) if
def(MB) = dB, def(ME) = dE, and the ACK has not (δ = 0)
or has been (δ = 1) successfully received by Alice.

From Definition 3.1, we observe that the total number of
states defining M is 2(K + 1)2, which directly follows from

...
...

...

(2,K, 0) (2,K − 1, 0) . . . (2, 1, 0) (2, 0, 0)

(1,K, 0) (1,K − 1, 0) . . . (1, 1, 0) (1, 0, 0)

(0,K, 0) (0,K − 1, 0) . . . (0, 1, 0) (0, 0, 0)

(0,K, 1) (0,K − 1, 1) . . . (0, 1, 1) (0, 0, 1)

(K,K, 0) (K,K − 1, 0) . . . (K, 1, 0) (K, 0, 0)
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Fig. 1. State transition diagram for M (self-transition loops have been
omitted and only the states that can be reached with a non-zero probability
are represented). Each state has been tagged with its numeric label.

the fact that: (i) the maximum value of defect dB and dE is
equal to K (corresponding to the cases when Bob and Alice
have not successfully received any coded packet), and (ii) a
ACK can either be received (δ = 1) or not (δ = 0).

After a coded packet transmission, assuming dB ≥ 1,
the rank of MB will increase by one if and only if Bob
receives a coded packet that is linearly independent with the
previously received. Equivalently, the rank of MB can at most
be increased by one after a single coded packet transmission,
i.e., the defect of MB can at most be reduced by one after a
coded packet transmission. The same holds true from Eve.
As for the value of δ, Bob will attempt to acknowledge
the successful recovery of a source message as soon as dB
becomes equal to 0. For these reasons, all the K(K + 1)
states where dB ≥ 1 and δ = 1 cannot be reached and can
be disregarded. Thus, we will only consider the remaining
2(K + 1)2 −K(K + 1) = (K + 1) · (K + 2) states.

Example 3.1: Assume the system is in state (K,K, 0)
and ignore self-transition loops, Fig. 1 shows that M is
expected to exhibits non-null transition probabilities for states
(K − 1,K, 0), (K − 1,K − 1, 0) and (K,K − 1, 0) cor-
responding to the cases when Bob, Bob and Alice or just
Alice successfully receive a linearly independent coded packet,
respectively. Since Bob cannot transmit an ACK message
before a source message has been recovered, the transition
probability toward any state where δ = 1 is zero.

We then label the remaining (K + 1) · (K + 2) states.
Definition 3.2: Each state takes a numeric label ranging from

0 to (K + 1) · (K + 2) − 1. If δ = 1, the label of a state is
equal to dE, otherwise it is equal to (dB + 1)(K + 1) + dE.
Furthermore, in order to derive the probability transition
matrix of M, we prove the following lemma.

Lemma 3.1: Assume that matrix MX consists of K×(t+1)
elements and assume that the first t columns are linearly
independent, for X ∈ {B,E} and 1 ≤ t ≤ (K − 1). If
p > 1

q , the probability Wt of MX having rank t + 1 can
be approximated as follows:

Wt
∼= (1− pK) exp

(
−
t+1∑
`=2

(
t

`− 1

)
π`,K

(1− pK)`

)
, (2)

where π1,r = ρ1,r, π`,r = ρc,r −
∑`−1
s=1

(
`−1
s

)
ρs,`π`−s,r and

ρc,r =
[
1
q

(
1 + (q − 1)

(
1− q(1−p)

q−1

))c]r
. If p = 1

q , Wt is
Wt = 1− 1

qK−t
.
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Proof: Let RK,t+1 = P [rank(MX)] be the probability of
matrix MX having rank t+1. That is, let MX,t be the K × t
matrix defined by the first t columns of MX. The relation

Wt =
P [rank(MX) = t+ 1]

P [rank(MX,t) = t]
(3)

holds true due to the fact that if MX has rank t+1 then the first
t columns are linearly independent. From [9, Theorem 3.1],
in the case of a r×c sparse random matrix over Fq , it follows
that

Rr,c ∼= (1− pr)c exp

(
−

c∑
`=2

(
c

`

)
π`,r

(1− pr)`

)
, (4)

for r ≥ c. Thus, by substituting (4) in (3) and by noting that(
t
`−1
)
=
(
t+1
`

)
−
(
t
`

)
, (2) holds. Finally, the case when p = 1/q

directly follows form [9, Eq. (2)].
From (2), the probability transition matrix P of M can be

approximated by means of the following lemma.
Lemma 3.2: The probability Pi,j of moving from state i

to state j can be approximated as follows (only non-zero
probabilities are listed):
• If (K+1)(K−τ+2)−K ≤ i ≤ (K+1)(K−τ+2)−1,

for τ = 0, . . . , (K − 2),

Pi,j∼=


εB(1−εE)WK−dE if j = i− 1 ∧ dB ≥ dE
(1−εE)[WK−dE−(1−εE)WK−dB ]if j = i− 1 ∧ dB < dE
εE(1−εB)WK−dB if j = i−K − 1 ∧ dE ≥ dB
(1−εB)[WK−dB−(1−εB)WK−dE ]if j = i−K − 1 ∧ dE < dB
(1−εB)(1−εE)WK−min(dB,dE) if j = i−K − 2
1−

∑
j={i−1,i−K−1,

i−K−2}
Pi,j if j = i

(5)
• If 2K + 3 ≤ i ≤ 3K + 2,

Pi,j∼=



εB(1−εE)WK−dE if j = i− 1 ∧ dB ≥ dE
(1−εE)[WK−dE−(1−εE)WK−dB ] if j = i− 1 ∧ dB < dE
εKεE(1−εB)WK−dB if j = i−K − 1 ∧ dE ≥ dB
εK(1−εB)[WK−dB−(1−εB)WK−dE ] if j = i−K − 1

∧ dE < dB
εK(1−εB)(1−εE)WK−min(dB,dE) if j = i−K − 2
(1−εK)εE(1−εB)WK−dB if j = i− 2K − 2 ∧ dE ≥ dB
(1−εK)(1−εB)[WK−dB−(1−εB)WK−dE ] if j = i− 2K − 2

∧ dE < dB
(1−εK)(1−εB)(1−εE)WK−min(dB,dE) if j = i− 2K − 3
1−

∑
j={i−1,i−K−1,i−K−2,

i−2K−2,i−2K−3}
Pi,j if j = i

(6)
• If K + 2 ≤ i ≤ 2K + 1,

Pi,j∼=


εK(1− εE)WK−dE if j = i− 1
(1− εK)(1− εE)WK−dE if j = i−K − 1
(1− εK)[1− (1− εE)WK−dE ] if j = i−K − 2
εK[1− (1− εE)WK−dE ] if j = i

(7)

• If i = (K + 1)(K − τ + 1), for τ = 0, . . . , (K − 2),

Pi,j∼=
{
(1− εB)WK−dB if j = i−K − 1
1− (1− εB)WK−dB if j = i (8)

• If i = 2(K + 1),

Pi,j∼=

{
(1− εK)(1− εB)WK−dB if j = i− 2K − 2
εK(1− εB)WK−dB if j = i−K − 1
1− (1− εB)WK−dB if j = i

(9)

• For i = K + 1,
Pi,j=

{
(1− εK) if j = i−K − 1
εK if j = i (10)

• If 0 ≤ i ≤ K, the state is and absorbing state and, hence,
Pi,j = 1.
Proof: We consider the case as per (5). In particular, we

consider the case where j = i − 1, which we can informally

regard as the case where a state transition occurs horizontally,
from left to right (see Fig. 1). As such, Bob will either not
correctly receive a coded packet with probability εB or he
will receive a coded packet without reducing the defect of
MB. Conversely, Eve successfully receives a coded packet
that reduces the defect of ME. That is,

Pi,j = εB(1− εE)P[rank(ME) = K − dE] (11)
+ (1− εB)(1− εE)
· P[rank(MB) = K − dB ∧ rank(ME) = K − dE + 1],

since MB and ME are statistically correlated. Thus, we have
the following cases. If dB ≥ dE, the probability of MB not
reducing its defect while ME does is expect to be small. Thus,
the term P[rank(MB) = K−dB∧rank(ME) = K−dE+1] can
be disregarded, and relation Pi,j ≥ εB(1− εE)P[rank(ME) =
K − dE] holds. If dB < dE, the term P[rank(MB) =
K − dB ∧ rank(ME) = K − dE + 1] can be approximated
by subtracting the probability of MB reducing its defect from
the probability of dE being reduced as a result of a successfully
received coded packet. From [5, Lemma 3.2], it follows that
Pi,j ≥ εB(1 − εE)P[rank(ME) = K − dE] + (1 − εB)(1 −
εE)
(
P[rank(ME) = K−dE+1]− P[rank(MB) = K−dB+

1]
)

. The same reasoning holds true when j = i − K − 1

and we informally say that the transition occurs vertically,
from top to bottom. In that case, the third and fourth cases
of (5) follows by simply substituting E with B in the first and
second cases of the same relation. Let us now consider the
situation where j = i−K − 2, which corresponds to the case
where both MB and ME reduce their defect as a result of a
successfully received coded packet. In this case, we informally
say that the transition occurs diagonally. That is, both Bob
and Eve successfully receive a coded packet with probability
(1−εB)(1−εE). Since MB and ME are statistically correlated,
from [5, Lemma 3.2], it follows that Pi,j is upper-bounded
by the product of (1−εB)(1−εE) and the probability of Mt

reducing its defect, where the index t ∈ {B,E} signifies the
matrix with the smallest defect between MB and ME. We then
approximate Pi,j with the aforementioned upper-bound.

As for the cases when i fulfills the conditions for (6), from
Fig. 1, we observe that the probability of having a horizontal
transition (j = i− 1) can be approximated as per the first and
second case of (5). Once again, the probability of having a
vertical transition can be approximated according to the third
and fourth case of (5) multiplied for (1 − εK) or εK if the
transition leads to a state where the ACK message has (δ = 1)
or has not been successfully delivered (δ = 0), respectively.
The same reasoning holds true for the diagonal transitions.

When i fulfil the conditions for (7), transition probability
can be seen as a special case of (5) where WK−dB is 0 as
the defect of MB is 0. Relations (8) and (9) are special cases
of (5) and (6), respectively, where only vertical transitions are
considered and WK−dE is 0, as dE is equal to 0. When i
fulfills the condition for (10), both dB and dE are equal to 0
– thus, the system remains in the state (K +1) for as long as
the ACK message cannot be successfully delivered. Finally,
the first K + 1 states are absorbing as Bob can successfully
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acknowledge to Alice the recovery of the source message and
the transmission of coded packets is subsequently halted.

From Lemma 3.2, it follows that M does not contain
any cycles other than loops. For these reasons, P is a
(K + 2)× (K + 1) lower-triangular matrix with non-zero di-
agonal elements, which makes P invertible in the real field.
Finally, The intercept probability can be obtained as follows.

Theorem 3.1: For a given probability p and a maximum
number of coded packet transmissions N̂ , the intercept prob-
ability IN̂ (p) can be approximated as

IN̂ (p) ∼=
∑

j∈{τ(K+1),

for τ = 0, . . . , (K + 1)}

PN̂
(
(K + 1)2 +K, j

)
, (12)

where PN̂ (s, t) signifies the (s, t)-th element of the matrix
P after it has been elevated to the power of N̂ , for s and
t = 0, . . . , (K + 1)2 +K.

Proof: The system starts with probability 1 from the state
with label (K + 1)2 + K, i.e., the system starts from state
(K,K, 0) with probability 1. The term IN̂ (p) is equal to the
probability of the system being in any of the states having dE
equal to 0, for a given N̂ . From Definition 3.2, we observe
that states with labels τ(K + 1), for τ = 0, . . . , (K + 1) are
associated with those cases where Eve successfully recovered
the information message. That is, (12) holds.

IV. OPTIMIZATION MODEL

We define the Intercept Minimization (IM) problem as
follows: IM min

p
IN̂ (p) (13)

s.t. DN̂ (p) ≥ D̂ (14)

where DN̂ (p) signifies the probability of Bob recovering the
source message. For a given value of p and N̂ , constraint (14)
ensures that Bob recovers the source message with at least
probability D̂. Form [6], [9], it follows that the average number
of coded packet transmissions needed to recover a source
messages increases as p increases. Thus, not only Eve but also
Bob is expected to require more coded packet transmissions
to recover a source message. To prevent the IM problem to
minimize the intercept probability by increasing the value of
p at the expense of the number of coded packet transmissions,
constraint (14) not only imposes a minimum threshold for the
probability of Bob recovering a source message but also it
ensures that a source message has to be recovered by N̂ coded
packets transmissions. As such, if we consider the case where
one coded packet transmission takes place in one-time slot,
the proposed optimization framework ensures the delivery of
a source message with a probability greater than or equal to
D̂ in N̂ time slots or less.

Remark 4.1: By following the same reasoning as
in Theorem 3.1, term DN̂ (p) can be approximated as∑K+1
j=0 PN̂

(
(K + 1)2 +K, j

)
. However, as discussed in the

proof of Lemma 3.2, the proposed approximation of Pi,j is
likely to over-estimate both IN̂ (p) and DN̂ (p) – thus making
approximation (12) an empirical upper-bound of the system
intercept probability but leading to potentially overestimating
the probability of Bob recovering the source message. For the

sake of solving the IM problem, DN̂ (p) is approximated by
directly employing (4), as per [9, Eq. (2), Theorem 3.1]:

DN̂ (p) ∼=
N̂∑

n=K

(
N̂

n

)
(1− εB)nεN̂−nRn,K . (15)

The the IM problem can be solved as follows.
Remark 4.2: From (2), it follows that term∑t+1
`=2

(
t
`−1
) π`,K
(1−pK)`

is a non-decreasing function of p,
which makes Wt a non-increasing function of p. That is, for
a given N̂ , the higher p, the more unlikely it gets for the
system to be in any of the states with label τ(K + 1), for
τ = 0, . . . , (K + 1), i.e., the more unlikely it gets for Eve
to recover the source message. In the following section, we
will show how the proposed approximation for the intercept
probability IN̂ (p) is largely a non-increasing function of p, for
q−1 ≤ p < 1 and εK ≥ 0.85. Similarly, (4) is a non-increasing
function of p, which makes (15) a non-increasing function
as well. For these reasons, the solution of the IM problem
is given by the real root of DN̂ (p) − D̂ = 0, which can be
derided by employing the bisection method.

V. NUMERICAL RESULTS

This section compares the derived expression of the inter-
cept probability with Monte Carlo simulations, and solves the
IM problem for different configurations. The code needed to
reproduce our results is available online1.

Fig. 2 compares the expression of the intercept probability
as per (12) with Monte Carlo simulations, for K = 20,
q = {2, 24} and N̂ = 2K. We also set Bob’s and Eve’s
packet error probability equal to εB = {0.01, 0.05, 0.1} and
εE = εB+0.25, respectively. In particular, Fig. 2a shows that,
for q = 2, (12) is a tight empirical approximation of the inter-
cept probability – the maximum Mean Squared Error (MSE)
between simulations and our proposed approximation (12) is
equal to 0.933 · 10−3, for εB = 0.01, εE = 0.26 and εK = 1.

For q = 24, Fig. 2b shows that the intercept probability
are almost constant for 2−4 ≤ p ≤ 0.73, which follows from
the fact that both ρc,r and π`,K approach 0 as q grows (see
Lemma 3.1), and hence, Wt can be approximated with (1 −
pK). The proposed approximation becomes looser only when
the probability p of a source packet not taking part in the
generation of coding vector is very large (p ≥ 0.8).

From Fig. 2, we also observe that the proposed (12) is also
an empirical upper-bound of the intercept probability both in
the case of q = 2 and 24, for εK ≥ 0.85 and εK ≥ 0.9,
respectively. In addition, for p ≥ 0.8 and εK ≥ 0.85, the
simulated IN̂(p) sharply decreases as the value of p approaches
0.9 and hence, the probability of having all-zero coding vectors
sharply increases thus, making for both Eve and Bob more
unlikely to recover a source message – for instance, if the
value of p increases from 0.8 to 0.9, the probability of having
an all-zero coded packet increases from 0.012 to 0.12, for
K = 20. For εK ≤ 0.5 or εK ≤ 0.85, for q = 2 and 24,
respectively, the intercept probability increases with p, for
0.75 ≤ p ≤ 0.85. That is, as εK decreases, the number of
coded packets transmitted after Bob has already recovered

1https://github.com/andreatassi/SparseRLNC.
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(a) q = 2 (b) q = 24

Fig. 2. Comparison of IN̂(p) as a function of p obtained through simulations
(Simul.) and approximated (Theory) as in (12), for εB = {0.01, 0.05, 0.1},
εE = εB + 0.25, εK = {0, 0.5, 0.85, 0.9, 0.95, 1}, K = 20, N̂ = 2K and
q = {2, 24}. Legend of both figures is reported in Fig. 2b.

the source message decreases as well. This impacts on the
probability of Eve recovering the source message, and hence,
the overall value of IN̂(p) reduces up to 0.05. In these cases,
from Lemma 3.1, we note that some composite transition
probabilities are non-decreasing functions with p and in this
case they can be appreciated in the overall expression of IN̂(p).
Assuming εE = εB = 0, K = 20 and that M transitions from
(4, 5, 0) to (3, 4, 0) and then to (3, 3, 0), the overall probability
of this transitions to happen is WK−4(WK−4−WK−3) which
is a non-decreasing function of p when 0.7 ≤ p ≤ 0.87 and
0.7 ≤ p ≤ 0.9, for q = 2 and 24, respectively.

Fig. 3 compares the intercept probability obtained by em-
ploying the proposed IM problem with the state-of-the-art
performance of a system model as per [2], [3] where p = 1/q
and hence, the classic RLNC is used. In particular, Fig. 3
shows the intercept probability gain defined as the difference
between the intercept probability values obtained by using
the classic RLNC and the intercept probability that we get
by setting p equal to the solution of the IM problem p? –
namely, IN̂(1/q) − IN̂(p

?). In order to show the intercept
probability gain effectively achieved, both IN̂(1/q) and IN̂(p

?)
are obtained by employing Monte Carlo simulations.

Let us consider Fig. 3a, for εB = 0.05, εE = 0.2, K = 5
and q = 2. In the case of εK = 1, the intercept probability
gain sharply increases and reaches its maximum of 0.196
for N̂ = 17. As εK decreases, the intercept probability gain
decreases as well. In particular, for N̂ = 17 and εK = 0.85,
the intercept probability gain reduces to 0.15. For q = 24,
the intercept probability gain is generally larger. That is, for
εK = 1 and εK = 0.85, the intercept probability gain reaches
its maximum of 0.25 and 0.27, for N̂ = 75. With regard to
Fig. 3b, as εE increases to 0.3, the intercept probability gain
reaches the value of 0.33 and 0.36, for q = 2 and q = 24,
respectively. As K is set equal to 20, the intercept probability
gain associated to q = 2 and q = 24 are comparable.
We also note that, as εK decreases, we expect the intercept
probability gain to decrease the chances of Eve successfully
receiving enough coded packets to recover the source message
are impaired by the reduced probability of Alice having to
unnecessarily broadcast coded packets due to the loss of
acknowledge messages from Bob.

In Figs. 3c and 3d, Bob’s packet error probability is doubled
(εB = 0.1). Yet, the intercept probability gains are comparable
to those in the cases where εB was equal to 0.05. Since
in Fig. 3 the difference εE − εB is fixed and set equal to
0.15 or 0.25, we can conclude that the value of the intercept
probability gain is determined by the difference in the packet

K = 5

K = 20

(a) εB = 0.05, εE = 0.2

K = 5

K = 20

(b) εB = 0.05, εE = 0.3

K = 5

K = 20

(c) εB = 0.1, εE = 0.25

K = 5

K = 20

(d) εB = 0.1, εE = 0.35

Fig. 3. Intercept probability gain as a function of N̂ , for εB = {0.05, 0.1},
εE − εB = {0.15, 0.25}, εK = {0.85, 0.9, 0.95, 1}, K = {5, 20} and q =
{2, 24}. Legend of all figures is reported in Fig. 3a.

error probability between Eve and Bob, for a given p and N̂ .

VI. CONCLUSIONS

We present a novel strategy for approximating the inter-
cept probability for networks where secrecy is achieved by
employing a sparse implementation of RLNC. The proposed
approximation is general and applies to the cases where
transmissions are not acknowledged or when they are and the
eavesdropper jams the feedback channel. We also propose an
optimization framework for minimizing the intercept proba-
bility by increasing the sparsity of RLNC in use. Analytic
results empirically establish that the proposed approximation
for the intercept probability is tight, for practical network and
transmission parameters. Our optimization framework ensures
a reduction of the intercept probability of up to 82% compared
to the case where classic RLNC is used.
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