
Parallel Implementation of the OMNeT++ INET
Framework for V2X Communications

Ioannis Mavromatis, Andrea Tassi, Robert J. Piechocki, and Andrew Nix
Department of Electrical and Electronic Engineering, University of Bristol, UK

Emails: {Ioan.Mavromatis, A.Tassi, R.J.Piechocki, Andy.Nix}@bristol.ac.uk

Abstract—The field of parallel network simulation frame-
works is evolving at a great pace. That is also because of
the growth of Intelligent Transportation Systems (ITS) and the
necessity for cost-effective large-scale trials. In this contribution,
we will focus on the INET Framework and how we re-factor its
single-thread code to make it run in a multi-thread fashion.
Our parallel version of the INET Framework can significantly
reduce the computation time in city-scale scenarios, and it is
completely transparent to the user. When tested in different
configurations, our version of INET ensures a reduction in the
computation time of up to 43%.

Index Terms—Vehicular Communications, INET Framework,
Omnet++, Full-Stack Simulations, IEEE 802.11p, CAV, DSRC.

I. INTRODUCTION AND MOTIVATION

Recently, more and more resources are being allocated
to developing of sophisticated communication frameworks
for the next-generation Intelligent Transportation Systems
(ITSs). As such, the issue of running cost-effective city-scale
experimentation is often addressed by means of simula-
tion frameworks [1], [2]. Unfortunately, existing simulation
frameworks (i.e., ns-2, INET, etc.) execute in a single-
thread fashion. Thus, in city-scale scenarios, one minute
of simulation can easily result in days of computation.

Researchers in the area of Parallel Discrete Event Sim-
ulations (PDES) have tried to leverage from new high-
performance computing platforms for a very long time.
Unfortunately, this resulted in parallel features that require
a quite laborious reconfiguration of the existing scenarios,
without always assuring improvement in the simulation
time [3]. For these reasons, existing simulation frameworks
are mainly operated in a single-thread fashion. The ne-
cessity for parallel models, motivated us to investigate
the existing frameworks and exploit ways of parallelizing
them. In this work, we investigate the INET Framework [4]
that is an open-source library for OMNeT++ simulation
environment [3]. INET is one of the most well-known
tools for vehicular simulations being a full-stack network
simulation framework. In this poster, we will identify the
sequential functions of INET related to the exchange of
wireless packets and analyze the way they can be paral-
lelized. Then, we will present our multi-threaded version
of the aforementioned functions. Our multi-thread imple-
mentation of the INET Framework can be downloaded from
https://github.com/v2x-dev/multithread-inet.

II. SYSTEM ANALYSIS AND PROPOSED SOLUTION

We identify at first the way INET interprets obstacles
and propagated signals. In a vehicular scenario, buildings
are the main obstacles that can be found in a city. INET
refers to them as obstacles and parses them within the
PhysicalEnvironment namespace. All the obstacles are listed
in an XML file with an attribute type, which defines their
shape. Each obstacle is represented by a set of coordinates,
that are regarded as the edges of the building in the 3D
space. Each building is also associated with a specific
material that is being used to calculate the attenuation
loss caused by the obstacle. The obstacle loss in INET is
calculated by two different models, the IdealObstacleLoss
and the DielectricObstacleLoss. The first determines either
the signal as completely blocked, or not attenuated when
intersected with a physical object. The latter computes the
power loss based on the material properties, the shape, the
position and the orientation of an obstacle.

INET treats the positions of each vehicle as a point on the
simulation canvas and updates them by using the SUMO
traffic generator [5]. The signal propagation is modeled as
a line segment, between point A and point B. The signal
attenuation is a function of: 1) the path loss model, 2)
the obstacle loss model from the number of intersections
calculated as mentioned before. Both models are configured
by the user. What is really of interest, is the way INET cal-
culates the attenuation due to the wall intersections. When
a packet is transmitted, INET finds in a sequential and
iterative manner all the intersections with the obstacles. For
the given intersections, it calculates the obstacle loss using
the function visit of the obstacles classes mentioned above.
Considering the above and that IEEE 802.11p operates in
broadcast mode, it is evident that the above process is
computationally expensive. In fact, the computation of the
attenuation loss has a computational complexity of O(mn2),
where n is the vehicles and m the number of obstacle
intersections. This significantly increases the simulation
time in large-scale scenarios.

In order to overcome the aforementioned problem, we
developed a multi-thread version of the PhysicalEnviron-
ment class by modifying the function visitObjects. This
function is responsible for parsing all the obstacles and
finding the power attenuation. Also, we modified visit in
DielectricObstacleLoss, to ensure flawless operation. In our
version of INET, the number of threads can be dynamically



Table I
LIST OF SIMULATION PARAMETERS.

Parameter Value Parameter Value

Simulation time 100 s Carrier Frequency 5.9 GHz
TX Power 25 dBm Channel Bandwidth 10 MHz

TX/RX Antenna Gain 9 dBi Message Length 140 B
RX Sensitivity −93 dBm Pathloss Exponent 2.4

Cable/System Loss 3 dB Distance Boundary 1000 m
Transmission Interval 0.1 s

changed by the user when initializing a scenario.
In city-scale scenario (namely, maps greater than ≥ 2km),

vehicles are not expected to communicate from one side of
the city to the other. Despite this, INET always computes
the intersection map between each pair of vehicles and
their signal attenuation, regardless of the distance between
them. In order to speed up the execution time even further,
we integrate the notion of the transmission radius in the
system. As such, we introduced the distanceBoundary user
parameter, within the ScalarAnalogueModel class, under the
RadioMedium namespace. For all the exchanged packets,
we find the distance between the two communicating ve-
hicles, and if it is greater than the given boundary, we regard
the packet as non-deliverable. By that, we can avoid unnec-
essary calculations in the PhysicalEnvironment model. Of
course, the above improvement can be implemented into
other analog models as well (e.g., DimensionalAnalogModel)
but we chose the scalar one as a proof of concept.

III. PERFORMANCE EVALUATION AND DISCUSSION

We evaluate the performance of our implementation with
two large-scale scenarios in a grid-like fashion. The simula-
tion parameters are as shown in Table I. At first, we evaluate
the execution time as a function of the number of vehicles
for a map of size 2km2. Then, we present the execution
time as a function of the map size. We consider six map
sizes {800,1100,1400,1700,2000,2300}m2 and 100 vehicles
for each scenario. All scenarios have roads equally spread
horizontally and vertically every 100 m, without traffic lights
at the intersections. Each road is 2-lanes wide. Within each
road square, we generated buildings with sides of 950m that
act as obstacles in our scenarios. Finally, for all scenarios,
we generated the vehicle traffic by using SUMO [5].

Fig. 1 shows the execution time measured as a function
of the number of vehicles. Any multi-threaded execution
generates some computational overhead in order to create
the threads and handle the content-switch. To that extent,
we compared two different number of threads (4 and 10).
Overall, by parallelizing the functions mentioned above, our
version of INET ensures reduced computation times. When
four threads are used, we observe an improvement of up
to 30%. When ten threads are utilized, the improvement
ranges between 10% and 12%. The increased overhead of
the number of threads in the second case is the reason for
this difference in the performance. We observed that the
optimum number of threads is scenario dependent and is
related to the average number of intersections between the
communicating vehicles (one thread per intersection).

12:0
8m

13:4
5m

16:5
8m

27:0
0m

33:2
9m

38:3
0m

00:5
4:3

8h

01:0
4:2

3h

01:1
2:4

2h

01:4
4:5

9h

02:0
4:4

4h

02:2
0:1

9h

05:08:57h

05:51:53h

06:28:45h

50 75 100 125 150

Number of Vehicles

0

0.5

1

1.5

2

2.5

3

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

10
4

4 Threads
10 Threads
Serial

Figure 1. The execution time, measured as a function of the number of
vehicles for the parallel and the sequential implementation.

800m
2

1.1km
2

1.4km
2

1.7km
2

2km
2

2.3km
2

Map Size

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

4 Threads
10 Threads
Serial

Figure 2. The execution time, measured as a function of the map size for
the parallel and the sequential implementation.

Fig 2 shows the execution time required, as a function of
the map size, for 100 vehicles. The synthetic maps we gener-
ated have a relatively small number of obstacles compared
to a real city. We observe that for small maps (from 800m2

to 1.4km2) the sequential INET achieves slightly better
performance compared to the parallel one. This is caused
by the multi-thread overhead. However, for larger maps, we
observe that our multi-thread version of INET outperforms
the sequential one by reducing the computational time of
43%, for a 2.3km2 map. Again, when we increase the num-
ber of threads, the increased overhead leads to increased
simulation time compared to the 4-thread scenario, but still
manages to outperform the sequential execution. Finally
what we observe is that for maps ≥ 1.7km2, as the size
of the map increases, the execution time decreases. This
is because of the distance boundary that we introduced.
For a fixed number of vehicles that are equally spread on
the surface of the map, the distance between them will be
greater when the size of the map is increased.

IV. CONCLUSIONS
In this work, we investigated the bottleneck of the INET

Framework and proposed an optimized multi-thread re-
factoring of its code. With our solution, the computation
time can be decreased by up to 43% compared to the single-
thread version. Our multi-threaded implementation ensures
the seamless integration with the existing simulation sce-
narios of a user and is easily configurable to speedup the
simulation time when required.

REFERENCES

[1] I. Mavromatis, A. Tassi, R. J. Piechocki, and A. Nix, “Agile Calibration
Process of Full-Stack Simulation Frameworks for V2X Communica-
tions,” in Proc. of IEEE VNC 2017, Nov. 2017.

[2] I. Mavromatis, A. Tassi, G. Rigazzi, R. J. Piechocki, and A. Nix, “Multi-
Radio 5G Architecture for Connected and Autonomous Vehicles: Appli-
cation and Design Insights,” EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems, vol. 4, no. 13, 3 2018.

[3] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proc. of ICST, Mar. 2008.

[4] “INET Framework,” https://inet.omnetpp.org/, 2018.
[5] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Devel-

opment and Applications of SUMO - Simulation of Urban MObility,”
Int. J. On Adv. in Syst. and Measurements, vol. 5, no. 3-4, Dec. 2012.

https://inet.omnetpp.org/

	Introduction and Motivation
	System Analysis and Proposed Solution
	Performance Evaluation and Discussion
	Conclusions
	References

