
1

Analysis and Optimization of Sparse Random

Linear Network Coding for Reliable Multicast

Services
Andrea Tassi, Ioannis Chatzigeorgiou and Daniel E. Lucani

Abstract—Point-to-multipoint communications are expected to
play a pivotal role in next-generation networks. This paper refers
to a cellular system transmitting layered multicast services to a
multicast group of users. Reliability of communications is ensured
via different Random Linear Network Coding (RLNC) tech-
niques. We deal with a fundamental problem: the computational
complexity of the RLNC decoder. The higher the number of
decoding operations is, the more the user’s computational over-
head grows and, consequently, the faster the battery of mobile
devices drains. By referring to several sparse RLNC techniques,
and without any assumption on the implementation of the RLNC
decoder in use, we provide an efficient way to characterize the
performance of users targeted by ultra-reliable layered multicast
services. The proposed modeling allows to efficiently derive the
average number of coded packet transmissions needed to recover
one or more service layers. We design a convex resource allocation
framework that allows to minimize the complexity of the RLNC
decoder by jointly optimizing the transmission parameters and
the sparsity of the code. The designed optimization framework
also ensures service guarantees to predetermined fractions of
users. The performance of the proposed optimization framework
is then investigated in a LTE-A eMBMS network multicasting
H.264/SVC video services.

Index Terms—Sparse network coding, multicast communi-
cation, ultra-reliable communications, green communications,
mobile communication, resource allocation, LTE-A, eMBMS.

I. INTRODUCTION

Among the major novelties likely to be implemented in

next-generation networks, there is the possibility of provid-

ing services characterized by an availability level of almost

100%. In the literature, that emerging kind of services is

usually referred to as ultra-reliable services [1]. The ultra-

reliable way of conveying services is expected to be greatly

useful in a plethora of applications, such as reliable cloud-

connectivity, data harvesting from sensors, professional com-

munications [2].

Among the possibilities, this paper refers to a system model

where a Base Station (BS) transmits, in a multicast fashion, a

Point-to-Multipoint (PtM) service to a Multicast Group (MG)
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of users. In particular, the multicast service is provided in

an ultra-reliable way, hence, the service shall be received

by predetermined fractions of users, and has to meet target

temporal constraints. It is worth noting that the possibility

of managing ultra-reliable multicast applications is pivotal,

in any Professional Mobile Radio (PMR) standard [3]. Even

though classic PMR standards, like Terrestrial Trunked Radio

(TETRA) or Association of Public-Safety Communications

Officials-Project 25 (APCO P25), refer to ad-hoc commu-

nication protocol stacks, the upcoming evolutions of those

standards will rely on the 3GPP’s Long Term Evolution-

Advanced (LTE-A) standard and its extents [4]. As a result,

next-generation PMR standards are expected to enable the de-

ployment of PMR systems over pre-existing LTE-A networks.

In this paper, we consider a system model where the

base station multicasts a scalable service composed by one

base layer and multiple enhancement layers. The base layer

provides a basic reconstruction quality that is gradually im-

proved as one or more enhancement layers are progressively

received. Because of the layered nature of the considered

multicast service, it is natural to refer to service reliability

constraints, which impose that at least a minimum number of

users is able to recover predetermined sets of service layers,

by a given temporal deadline. The layered service approach

has been originally adopted in video communications [5].

However, as discussed in [1] and [6], the same principle is

likely to go beyond the traditional boundaries of multimedia

communications and be applied in other fields in order to

achieve an analog-like service degradation.

Because of the ultra-reliable nature of the considered mul-

ticast service, users are required to acknowledge to the base

station when they successfully recovered one or more service

layers. Even though there exists Automatic Repeat-reQuest

(ARQ) [7] and Hybrid ARQ error control protocols [8] suitable

for PtM communications, the protocol complexity and the

required amount of feedback quickly become intractable as the

number of users increases. For these reasons, the reliability

of PtM communications is ensured via Application Level-

Forward Error Correction (AL-FEC) techniques based on Luby

Transform (LT) or low-density parity-check codes. However,

as noted in [9], these kind of codes require large block lengths

to operate close to their capacity, and that could potentially

be an issue, in the case of multimedia communications. In

addition, the most recent evolutions of LT codes [10] usually

rely on fixed degree distribution functions and, hence, the

code sparsity cannot be optimized on-demand. To this end,
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in order to mitigate those issues, our system model ensures

reliability of multicast communications, via Random Linear

Network Coding (RLNC) techniques [11], [12].

Given a source message of k source packets to be multicast,

the RLNC principle generates and multicasts a stream of

coded packets, where each of them is obtained as a linear

combination of multiple source packets. A user recovers the

source message as soon as it collects a number of linearly

independent coded packets that is equal to k. RLNC schemes

have been used in several wireless settings as a versatile

solution for reliable service delivery [13], [14]. Among the

literature contributions, M. Xiao et al. [15] refer to a system

model where nodes are connected by a network that can be

represented by a Direct Acyclic Graph (DAG); that network

consists of one source node and several sinks. In [15], the

RLNC principle takes place at the network layer and allows

intermediate nodes to combine several incoming data flows;

reliability of coded packet transmissions is ensured via a

channel code operating at the physical layer. The size of

coded packets and the channel code rate are jointly optimized

to minimize the end-to-end delay at the network layer. In

addition, multiple resource allocation approaches have been

proposed to improve the reliability of layered services via

different RLNC implementations [16]–[18]. In particular, [16]

considers a multi-hop directed acyclic graph network topology

where a scalable service is multicast to multiple receivers.

That paper proposes to optimize the communication rate on

each link, in order to improve reliability. Channel erasures

are further mitigated via classic FEC techniques. Similarly

to [16], [17] deals with multi-hop network topologies and

layered services. However, in that case, reliability of end-to-

end communications is improved via a specific implementation

of RLNC, which achieves a ladder-shaped global coding

matrix. Differently than [16] and [17], [18] applies RLNC to

populate a distributed caching system, kept by intermediate

network nodes. The communication-ends can take advantage

of that while they retrieve the desired scalable service, via a

reduced number of Point-to-Point sessions. In contrast to [15]–

[18], this paper refers to a typical cellular network topology,

where the source node transmits streams of coded packets to

a set of users in a multicast fashion. In other words, this

paper adopts RLNC to improve reliability over a one-hop

broadcast network and not as a way to improve the end-to-

end communication throughout across a multi-hop network

topology [12, Ref. [14]-[16]] and [19, Ref. [26]].

We observe that the application of RLNC to one-hop broad-

cast networks has been also discussed in [20] and [21]. In both

cases, the broadcasting of a set of source packets is split into

multiple stages. During the first stage all the source packets

are broadcast by the source node, then, in the following stages,

the source node and/or an intermediate relay node broadcast

streams of coded packets. Both [20] and [21] focus on different

forms of Instantly Decodable Network Codes, which generate

coded packets in a deterministic fashion, based on multiple

user feedback. As a consequence, we observe that the user

uplink traffic can quickly become non-negligible as the number

of users increases. Given that we will refer to a system model

composed by a source node multicasting services to a multicast

group composed by a potentially great number of users, it is

not appropriate to refer to the strategies as in [20], [21]. On the

other hand, we will refer to classic decodable RLNC strategies

(as in [19]) that are characterized by a significantly smaller

user feedback footprint.

Unfortunately, as noted in [22], [23], the flip side of the

considered RLNC techniques is represented by the complex-

ity of the decoding operations that depends, amongst other

code parameters, by the length k of the source message. As

noted in [24], [25], the decoding complexity problem can be

partially mitigated by the systematic implementation of RLNC

(SRLNC). However, in case of poor propagation conditions,

the performance of SRLNC coincides with that of RLNC [26].

Obviously, the more the decoding complexity grows, the more

the processing footprint increases and, hence, the battery

of mobile devices discharges. For these reasons, this paper

addresses the following fundamental question: Is there a way

to minimize the RLNC decoding complexity of ultra-reliable

layered multicast communications without altering the decoder

currently onboard mobile devices?

We will answer the aforementioned research question by

referring to multiple sparse RLNC techniques. As will be

clear in the following section, let us intuitively define the

sparsity of the code as the number of source packets that

on average are involved in the generation process of each

coded packet [22]. To the best of our knowledge, the general

expression of the decoding complexity as a function of the

source message length and the sparsity is unknown. However,

the decoding complexity decreases as the source message gets

shorter [23] and/or the sparsity increases [22]. Intuitively,

as the sparsity increases, the information content of each

coded packet decreases. Hence, the average number of coded

packets needed to recover a source message increases as the

sparsity grows [22]. That leads us to further refine our research

question as follows: Are there any optimized sparse RLNC

strategies ensuring: (i) a reduced decoding complexity, and

(ii) a recovery of the source message with an average number

of coded packet transmissions, which is close or equal to that

provided by non-sparse RLNC techniques?

The first contribution of the paper is that of providing

an efficient performance modeling of sparse non-systematic

and systematic RLNC techniques via a unified theoretical

framework. In particular, in Section II, we characterize the

user performance in terms of the average number of coded

packet transmissions needed to recover a given service layer.

It is well known in the literature that an exact expression for

the aforementioned performance index is unknown [27]–[30].

That is caused by the lack of an analytical formulation of

the probability of generating a full-rank sparse random matrix

over a finite field [30]. In order to mitigate the aforementioned

issue, X. Li et al. [27], [28], proposed a pioneering approach

for upper-bounding and lower-bounding the probability of

generating at random a sparse non-singular random matrix,

based on the zero pattern of the random matrix. Unfortunately,

the validity of the resulting bounds has been proven only for

large finite fields. Apart from that, those bounds cannot be

efficiently incorporated into an optimization model meant to

be solved on-demand, before starting the transmission of a
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service. In fact, the bound expressions involve nested sums

where each term is a product of several binomial coefficients,

which could not be practically derivable, in the case of large

source message lengths (Section II). Furthermore, it is also not

straightforward to formally prove the convexity of the bounds

as in [27], [28], because their definitions involve several non-

differentiable points.

For these reasons, we rely on the results presented in [29]

and extended in [30]. However, in [29], [30], authors only pro-

vide a lower-bound of the probability that a sparse (t+1)×k
matrix is full-rank, given that the first t rows are linearly

independent, for 0 ≤ t ≤ (k − 1). It is worth mentioning,

that the aforementioned result was provided without referring

to any communication system or coding strategy. By building

upon that result, we provide an upper-bound for the average

number of coded packet transmissions needed to recover a

service layer, via an Absorbing Markov Chain (AMC) with

reduced complexity. In particular, Section II-B will show how

our performance modeling does not involve any explicit matrix

inversion, which is a common and computationally costly step

in AMC-based analysis. As will be clear in the following

sections, that desirable feature is achieved because of: (i) the

nature of the aforementioned probability lower-bound and, (ii)

the way we defined the states of the proposed AMC model.

The second contribution of the paper is made in Section III,

where we answer to our research question by building upon

an efficient user performance characterization and proposing a

resource allocation framework for ultra-reliable layered multi-

cast services. The proposed framework aims to maximize the

code sparsity associated to each service layer, and hence, the

overall decoding complexity is minimized. The optimization

goal is fulfilled by a joint optimization of both the code

sparsity and the Modulation and Coding Schemes (MCSs)

used for multicasting each service layer. In addition, given the

layered nature of the transmitted services, the optimization

constraints ensure that the desired number of service layers

are recovered by predetermined fractions of users, with an

average number of coded packet transmissions that is smaller

than or equal to a target value. We prove that the proposed

resource allocation framework is convex and can be easily

solved. Finally, we remark that the proposed resource alloca-

tion framework applies for several sparse RLNC techniques,

in a complete RLNC decoder-agnostic fashion.

Even though our analysis deals with a generic cellular

system model, Section IV inspects the effectiveness of the

proposed optimized sparse RLNC techniques by referring to

a LTE-A communication network. We chose that particular

communication standard for two main reasons: (i) LTE-A is

likely to play a leading role in the early-stage deployment of

next-generation networks [31], and (ii) LTE-A provides the

support to handle PtM communications at the radio access

and core network level, by means of the evolved Multimedia

Broadcast Multicast Service (eMBMS) framework [32]. In the

proposed performance investigation, we refer to a MG targeted

by non-real time multimedia multicast services compressed

according to the widely used H.264 video encoding standard.

In particular, we referred to the scalable extension of H.264,

called Scalable Video Coding (H.264/SVC) [33]. In line with

the considered system model, an H.264/SVC video stream

consists of several layers such that the enhancement layers

improve the reconstruction quality provided by the base video

layer. Finally, Section V summarizes the main findings of the

paper.

II. SYSTEM MODEL AND PERFORMANCE

CHARACTERISATION

We consider a one-hop broadcast communication system,

which is composed by one source node and a MG of U
users (hereafter called multicast users). In order to improve

the reliability of PtM communications, the source transmits

data streams encoded according to the RLNC principle. As a

consequence, the source node transmits streams of network-

coded packets (henceforth referred to as coded packets) to

the MG. For the sake of generality, we assume that the

transmission of a PtM communication occurs over a set of

orthogonal broadcast erasure subchannels. Each subchannel

consists of basic resource allocation units called resource

blocks.

As mentioned in the previous section, our main goal is

to design a general optimized service-provisioning paradigm

for ultra-reliable multicast services, with a reduced decoding

computational complexity. The following section will also

clarify that the proposed theoretical modeling (Section II-B)

and the resource allocation procedure (Section III) are easily

applicable to any cellular system capable of multicasting

multiple data streams at the same time. However, in order

to effectively map user Quality of Service (QoS) constraints

onto typical system performance metrics (e.g., delay, packet

error rate, etc.), we will refer to an OFDM-based multicarrier

communication system.

In the considered physical layer, the downlink phase is

organized in radio frames. Resource blocks forming each

subchannel are transmitted in one or more radio frames. Each

frame can be modeled as a frequency × time structure where

the frequency and time domains are discretized into OFDM

subcarriers and OFDM symbols, respectively. Each resource

block occupies a fixed time interval (τ̂RB) and frequency band,

i.e., each resource block spans a fixed number of OFDM

symbols and OFDM subcarriers. Since multicast users may ex-

perience heterogeneous propagation conditions, user diversity

is exploited by assuming that the subcarriers used in a resource

block are selected at random among all the available ones [34].

We also assume that users are static or characterized by low

mobility, hence, the user channel conditions are considered

constant within a resource block.

Each coded packet is always mapped onto one resource

block and transmitted by means of a specific MCS that is

identified by an index, which can take M possible values. We

denote by pu(m) the Packet Error Rate (PER) experienced by

a multicast user u, and by r(m) the number of information bits

carried by one resource block, when the MCS with index m is

in use. Let us consider two MCSs with indexes a and b, where

a < b. In our system model we assume that the MCS with

index a is characterized by a smaller modulation order and/or a

lower channel code rate than b. For the same user propagation
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Fig. 1. Layered source message, in the case of L = 3.

conditions, we have pu(a) ≤ pu(b) and r(a) < r(b). We also

refer to a system where all the resource blocks belonging to the

same subchannel shall adopt the same MCS. Coded packets

associated with a PtM data service are transmitted via one or

more broadcast erasure subchannels.

The source node transmits to the MG a layered scalable

service consisting of one basic layer and L− 1 enhancement

layers. Each layer is characterized by different priority levels.

The basic layer (also referred to as “layer 1”) owns the highest

priority, which decreases in the case of the enhancement layers

(layers 2, . . . , L). In particular, layer L is characterized by

the lowest priority. Because of that, it is natural to define

the level of QoS achieved by a multicast user as the number

of consecutive message layers, starting from the base layer,

that can be recovered. Hence, a user shall achieve the QoS

level ℓ, if all the layers 1, . . . , ℓ are successfully recovered.

For instance, if a user successfully recovers message layers

{1, 2, . . . , ℓ, ℓ+2, ℓ+3, . . . , L} then layers 2 to ℓ improve the

information provided by layer 1. In that case, the QoS level

achieved is equal to ℓ, and layers ℓ+2, . . . , L do not provide

any QoS improvements, as layer ℓ+ 1 has not been received.

The considered multi-layer principle has been originally

designed for video compression standards. In the case of

H.264/SVC [33], it is possible to achieve different kinds of

video scalability [5]. With the spatial scalability, the video

frame resolution is gradually increased by each layer with the

purpose to fit screens with different capabilities. In that case,

the content provided by layer 1 allows a user, for instance,

to recover a 352 × 288 px video stream. By following the

same train of toughs, the spatial resolution can be boosted

to 720 × 480 px and 1920 × 1080 px, by means of layers 1

and 2, and layers 1 to 3, respectively. It is worth mentioning

that our analysis is generic enough to be applied to any

layered scalable service that follows the previously mentioned

hierarchical structure. It is beyond the scope of the paper

to provide analytical and optimization frameworks dealing

with the compression strategy used to generate a scalable

service. For these reasons, the proposed analysis has been

made independent of the way service layers are generated and

the nature of the adopted service scalability.

As suggested in [12], [19], we model the transmitted service

as a stream of information messages of the same size. The

scalable nature of the service is reflected on each message.

In particular, each message consists of L layers, where layer

ℓ is a sequence of bℓ bits. We remark that coded packets

associated with different message layers are transmitted by

different subchannels. Therefore, the total number of occupied

subchannels is L. In the rest of the paper, we will provide an

analytical framework suitable for optimizing the transmission

of each message and, hence, of the whole layered service.

Each layered message x = {x1, . . . , xK} consists of K

source packets, as shown in Fig. 1 for a 3-layer message.

In particular, layer ℓ of x is defined by a fixed number kℓ
of source packets, implying that K =

∑L

ℓ=1 kℓ. If the MCS

adopted by the subchannel delivering coded packets of service

layer ℓ is mℓ, the number of bits carried by each resource block

will be equal to r(mℓ). Hence, we define kℓ = ⌈bℓ/r(mℓ)⌉.

Without loss of generality we assume that the first source

packets of x belong to the base layer (ℓ = 1), and are

progressively followed by packets defining the enhancement

layers (ℓ = 2, . . . , L).

In the remaining part of the paper, we will characterize the

performance of different network coding strategies. It will also

become clear how the selection of MCS scheme and sparsity

associated with each message layer can be jointly optimized.

A. Random Linear Network Coding Background

Let Kℓ =
∑ℓ

t=1 kt be the number of source packets

forming the first ℓ layers of a source message. In the classic

implementation of RLNC, the source node linearly combines

source packets {xi}
Kℓ

i=Kℓ−1+1 forming message layer ℓ, in

order to generate a stream {yj}
nℓ

j=1 of nℓ coded packets,

where yj =
∑Kℓ

i=Kℓ−1+1 cj,i · xi. Each coding coefficient cj,i
is uniformly selected at random over a finite field GF(q)
of size q. The coding coefficients associated with yj define

the coding vector cj = (cj,Kℓ−1+1, . . . , cj,Kℓ
). Since each

coding coefficient is obtained by the same Pseudo-Random

Number Generator (PRNG), modern NC implementations are

keen on representing cj by the PRNG seed used to compute

the first coding vector component cj,Kℓ−1+1. The seed is

transmitted along with the correspondent coded packet. Since

each user is equipped by the same PRNG, it can incrementally

recompute all the coding vector components, starting from

the first one [11], [19]. The RLNC encoding process is then

repeated for each message layer ℓ = 1, . . . , L. A multicast

user can recover the source message layer ℓ, if it successfully

receives kℓ linearly independent coded packets associated with

that message layer.

Unlike classic RLNC, a coded packet stream obtained by

SRLNC associated with layer ℓ generates kℓ systematic packets

and one or more coded packets. The systematic packets are

identical to the source packets {xi}
Kℓ

i=Kℓ−1+1, while the coded

packets are obtained as in the classic RLNC case. For the sake

of the analysis, we define the coding vector associated with

systematic packet i as a vector where: (i) the i-th component

is equal to 1, and (ii) all the remaining components are equal

to 0. For clarity, we will refer to a coding vector related to a

systematic packet as degenerate coding vector in the rest of the

paper. In our system model, we assume that users acknowledge

to the source node, over a fully reliable channel, the successful

recovery of a layer. Furthermore, the source node transmits a

message layer until a predetermined fraction of multicast users

has recovered it. Obviously, as will become clear in Section III,

the transmission of each layer shall meet a temporal constraint.

The sparse versions of both the classic (S-RLNC) and

systematic implementation of RLNC (S-SRLNC) are obtained

as follows. Each component cj,i of a non-degenerate coding
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vector associated with source message layer ℓ is independently

and identically distributed as follows [28]:

Pr (cj,i = v) =







pℓ if v = 0
1− pℓ
q − 1

if v ∈ GF(q) \ {0}
(1)

where pℓ, for 0 < pℓ < 1, is the probability of having cj,i = 0.

The event cj,i 6= 0 occurs with probability 1− pℓ. We remark

that the average number of source packets involved in the

generation of a non-degenerate coded packet, i.e., the sparsity

of the code, can be controlled by tuning the value of pℓ, for

any ℓ = 1, . . . , L.

Since coding vectors are generated at random, there is the

possibility of generating coding vectors where each coding

coefficient is equal to 0. From a system implementation

perspective, all-zero coded packets should be discarded and not

transmitted. On the other hand, in the literature dealing with

the performance characterization of RLNC, it is common to

include the transmission of all-zero coded packets [35], [36].

In that way, the performance modeling is tractable and keeps

a higher degree of generality. The same principle is adopted

in this and the following sections. However, Section IV-A will

show how the proposed analytical modeling can be applied to a

practical communication system where all-zero coded packets

are not transmitted.

In order to establish a link between the coding schemes

presented in [12] and those discussed in this paper, the fol-

lowing sections will deal with the Non-Overlapping Window

(NOW-RLNC) and the systematic NOW-RLNC strategies. We

observe that the exact performance model of the Expanding

Window RLNC (EW-RLNC) strategy is unknown, even for

the non-sparse case. In fact, [12] proposes an upper-bound to

the probability of recovering a source message, when the EW-

RLNC is used. Since the reasoning behind that bound relies

on a well-known result of classic non-sparse RLNC [37], its

extension to the sparse case is not trivial. For these reasons, the

sparse implementation of EW-RLNC is still an open research

issue.

B. Markovian Modelling for Delay Performance

In this paper, user performance will be expressed in terms of

the average number of coded packet transmissions after which

a user u achieves a predetermined QoS level. For this reason,

in the remainder of the section, we focus on user u and model

the recovery of message layer ℓ as a Markovian process. In

particular, the user decoding process is modeled via an AMC.

Let Cu be a matrix associated with the user u consisting

of kℓ columns and variable number of rows. As user u
successfully receives a coded packet associated with layer ℓ,
the corresponding coding vector is extracted and added, as a

new row, into matrix Cu. Assume u already received nℓ ≥ kℓ
coded packets, i.e., Cu is a nℓ × kℓ matrix. User u recovers

layer ℓ when the rank of Cu, denoted by rank(Cu), is equal

to kℓ or equivalently when the defect of the matrix, defined

as def(Cu) = kℓ − rank(Cu), is zero. For these reasons, we

define a state of the user AMC as follows.

Definition 2.1: The AMC associated with user u and mes-

sage layer ℓ is in state s
(u,ℓ)
i , if def(Cu) = i, for i = 0, . . . , kℓ.

At first, when user u has not received any coded packet or

coded packets associated with zero-coding vectors, the defect

of Cu is kℓ, and hence, the AMC is in state s
(u,ℓ)
kℓ

. The

defect progressively decreases, i.e., the index of the AMC

state decreases, as new linearly independent coded packets are

received. As a consequence, in the case of layer ℓ, we have

that the AMC consists of kℓ + 1 states. Furthermore, in order

to define the probability transition matrix of the user AMC, we

summarize here the proof of the following lemma, presented

in [29, Theorem 6.3].

Lemma 2.1 ([29, Theorem 6.3]): Assume that matrix Cu

consists of (t + 1) × kℓ elements, for 0 < t ≤ (kℓ − 1),
and assume that t out of t+ 1 rows are linearly independent.

The probability Pℓ,t that matrix Cu is not full-rank admits the

following upper-bound:

Pℓ,t ≤

[

max

(

pℓ,
1− pℓ
q − 1

)]kℓ−t

. (2)

Proof: Without loss of generality, assume that the first t
rows of Cu, denoted by Cu,1, . . . ,Cu,t, are linearly indepen-

dent. By resorting to basic row-wise operations, it is possible

to transform Cu such that the first t rows and columns of Cu

define the t× t identity matrix. Consequently, the first t rows

of the transformed Cu generate the same vector space defined

by Cu,1, . . . ,Cu,t. The probability that Cu is not full-rank

entirely depends on the last kℓ − t components of the last

row Cu,t+1 of Cu. Hence, the probability that Cu,t+1 does

not belong to the vector space defined by Cu,1, . . . ,Cu,t is at

least 1−max
(

pℓ,
1−pℓ

q−1

)kℓ−t

. That completes the proof.

Because of (1), the exact QoS characterization is a chal-

lenging task [28]. In particular, to the best of our knowledge,

the exact expression of Pℓ,t is not known. In the rest of the

paper, owing to the lack of the exact expression of Pℓ,t, we

use (2) to approximate Pℓ,t, that is

Pℓ,t
∼=

[

max

(

pℓ,
1− pℓ
q − 1

)]kℓ−t

. (3)

The following remark is immediate from (2) and (3).

Remark 2.1: If pℓ = q−1, each non-degenerate coding vector

is equiprobable, for a given value of kℓ. Hence, a coding

vector belongs to the vector space generated by t linearly

independent coding vectors with probability Pℓ,t = qt/qkℓ .

This result has been discussed in the literature [37] but is

clearly not applicable to the sparse case, in contrast to (3).

It is worth mentioning that the considered approximation (3)

collapses to the exact expression of Pℓ,t and, hence, the

relation Pℓ,t = [max (pℓ, (1− pℓ)/(q − 1))]
kℓ−t

= qt/qkℓ

holds, for pℓ = q−1.

From (3), the transition probability matrix describing the

AMC associated with user u and message layer ℓ can be

derived by the following lemma.

Lemma 2.2: Assume layer ℓ is transmitted over a subchannel

which adopts the MCS with index m. The probability P
(u,ℓ)
i,j
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Fig. 2. State transition diagram for the AMC associated with user u and
message layer ℓ.

of moving from state s
(u,ℓ)
i to state s

(u,ℓ)
j is

P
(u,ℓ)
i,j =







(1− Pℓ,kℓ−i)[1 − pu(m)] if i− j = 1
Pℓ,kℓ−i[1− pu(m)] + pu(m) if i = j
0 otherwise.

(4)

Proof: Since the user AMC is in state s
(u,ℓ)
i , user u

has collected kℓ − i linearly independent coded packets, i.e.,

rank(Cu) = kℓ − i. As a new coded packet associated with

layer ℓ is transmitted, we have just two possibilities:

• The rank of Cu is increased to kℓ − i + 1 - The

coded packet is successfully received with probabil-

ity 1 − pu(m), and it is linearly independent of

the previously received coded packets with probability

(1− Pℓ,kℓ−i). This event occurs with a probability equal

to (1− Pℓ,kℓ−i)[1− pu(m)].
• The rank of Cu does not change - That may occur

because the coded packet is not successfully received or

because it is linearly dependent of the previously received

coded packets. This event occurs with a probability equal

to Pℓ,kℓ−i[1− pu(m)] + pu(m).

From (29), we also understand that the probability of mov-

ing from state s
(u,ℓ)
0 to another state is zero. Hence, s

(u,ℓ)
0

represents the so-called absorbing state of the AMC. All the

remaining states s
(u,ℓ)
1 , . . . , s

(u,ℓ)
kℓ

are commonly referred to

as transient states [38]. The state transition diagram of the

resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the

(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing

the AMC of user u and associated with layer ℓ has the

following structure in its canonical form [38]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the

AMC process as long as it involves only transient states. The

term R(u,ℓ) is a column vector of kℓ elements which lists all

the probabilities of moving from a transient to the absorbing

state. From [38, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =

∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1

. (6)

Element N
(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s
(u,ℓ)
i to state s

(u,ℓ)
j , where

both s
(u,ℓ)
i and s

(u,ℓ)
j are transient states. In particular, from

Lemma 2.2, the following theorem holds

Theorem 2.1 ([38, Theorem 3.3.5]): If the AMC is in the

transient state s
(u,ℓ)
i , the average number of coded packet

transmissions needed to get to state s
(u,ℓ)
0 is

τ
(u,ℓ)
i =











0 if i = 0
i
∑

j=1

N
(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.

Corollary 2.1: In the case of S-RLNC, the average number

τ
(u,ℓ)
S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ
(u,ℓ)
S-RLNC = τ

(u,ℓ)
kℓ

.

Proof: When the source node transmits the very first

coded packet, user u is in state s
(u,ℓ)
kℓ

. That follows from the

fact that the source node has not previously transmitted any

coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at

the end of the systematic phase, user u may have collected

one or more source packets, implying that def(Cu) may be

smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s
(u,ℓ)
0 , . . . , s

(u,ℓ)
kℓ−1.

Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ
(u,ℓ)
S-SRLNC of systematic and coded

packet transmissions needed to recover layer ℓ is

τ
(u,ℓ)
S-SRLNC =

kℓ
∑

i=0

π
(u,ℓ)
i

(

kℓ − i + τ
(u,ℓ)
i

)

(8)

where π
(u,ℓ)
i is the probability that the process associated with

user u starts from state s
(u,ℓ)
i , given by

π
(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]
kℓ−i

, i = 0, . . . , kℓ. (9)

Proof: Assume that u collects kℓ− i out of kℓ systematic

packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s
(u,ℓ)
i .

In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ
(u,ℓ)
i packet transmissions, namely,

kℓ − i systematic packets plus τ
(u,ℓ)
i coded packets. At the

end of the systematic packet transmission phase, the AMC

is in state s
(u,ℓ)
i with probability

(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ
(u,ℓ)
S-SRLNC is obtained by

simply averaging kℓ−i+τ
(u,ℓ)
i with the appropriate probability

value of π
(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-

putational complexity of the RLNC decoding operations, we

consider the reduction of the number of source packets, and the

increase of the sparsity of the non-degenerate coding vectors

per source message layer. As discussed in Section II, we

remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one

resource block or, equivalently, forming a coded packet, is
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likely to increase. Given that coded and source packets have

the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the

reception of subchannel ℓ is likely to increase, i.e., the fraction

of multicast users regarding the reception of subchannel ℓ as

acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the

probability pℓ of selecting a coding coefficient equal to zero

determine the average number of coded packet transmissions

and the average number of decoding operations needed to

recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ
(u,ℓ)
S−RLNC and τ

(u,ℓ)
S−SRLNC as a function of pℓ,

for q = 2, kℓ = {10, 70} and a packet error probability

pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves

have been obtained by computer simulations. More details

about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded

packets are transmitted after the systematic packets. Obviously,

if pu = 0, there is no need of transmitting coded packets as all

the systematic packets are successfully received. That explains

the reason way τ
(u,ℓ)
S−SRLNC is always equal to kℓ, for pu = 0.

On the other hand, as the value of pu increases, the number

of coded packets to be transmitted increases, as well. We also

observe that, for the same value of pu, τ
(u,ℓ)
S−SRLNC is smaller

than or equal to τ
(u,ℓ)
S−RLNC. That is given by the fact that, in the

case of S-SRLNC, there is aways the possibility for a user to

collect some systematic packets, which are obviously linearly

independent.

Both with S-RLNC and S-SRLNC (for pu > 0), we observe

that if pℓ approaches 1, then the average number of packet

transmissions needed to recover layer ℓ increases. That is given

by the fact that, coding vectors tend to be composed by all-

zero. In addition, for a given value of pℓ, as kℓ and/or pu
decrease, the value of τ

(u,ℓ)
S−RLNC decreases.

Fig. 3b shows the measured average number of decoding

operations ǫ
(ℓ)
S−RLNC and ǫ

(ℓ)
S−SRLNC needed to recover layer

ℓ, in the S-RLNC and S-SRLNC case, respectively. Results

are provided as a function of pℓ, for kℓ = {10, 30, 70}.

Obviously, ǫ
(ℓ)
S−RLNC does not depend on the user PER but

just on kℓ and pℓ. In this paper, we will only refer to the

fundamental finite field operations1 performed by a network

1Let a, b, c be three elements in GF(q), we will consider the following
operations: a · b, a+ b, a− b, a+ (b · c) and a− (b · c).
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Fig. 4. Logic radio resource mapping (left-hand side) and an example of
cyclic resource mapping (right-hand side), for L = 3.

coding decoder based on the Gaussian Elimination principle,

which represent the most computationally intensive part of the

decoding process [14]. In particular, the more pℓ increases,

the more the coding matrix Cu becomes sparser, and, conse-

quently, the Gaussian Elimination requires a smaller number

of iterations [22]. That behavior is confirmed by Fig. 3b,

ǫ
(ℓ)
S−RLNC decreases not only when kℓ decreases but also when

pℓ increases.

In the case of S-SRLNC, the value of ǫ
(ℓ)
S−SRLNC is indeed

affected by the user PER. The more pu increases, the more the

number of successfully received systematic packets decreases

and, the more the number of coded packets required to recover

the layer increases. Hence, that corresponds to an increment in

the value of ǫ
(ℓ)
S−SRLNC. In particular, Fig. 3b shows the value

of ǫ
(ℓ)
S−SRLNC, for pu = 0.1.

In the case of S-RLNC, in order to establish a link between

the average number of decoding operations and the time

needed to perform that number of decoding operations on a

low-end device, Fig. 3b also reports the average processing

time, for some (pℓ, kℓ) pairs. We have referred to a Gaussian

Elimination-based decoder run on a Raspberry Pi Model

B [39]. We note that there exists a linear relation between

a reduction in the value of ǫ
(ℓ)
S−RLNC and in the average

processing time.

In the rest of the section, we will define a novel optimization

model aiming to jointly optimize the sparsity of the code and

the MCS index used to multicast each layer of the source

message. The proposed model provides resource allocation

solutions, which ensure that predetermined fractions of users

recover sets of progressive layers, on average, within a given

number of packet transmissions. In addition, the proposed

model, at the same time, maximizes the sparsity and minimizes

the total source message length.

A. Proposed Resource Allocation Models

From the logic perspective, we refer to the radio resource

mapping presented in Fig. 4 (left-hand side). As the resource

block is our fundamental resource allocation unit, the time

duration of each radio frame shall be an integer multiple of

the resource block time duration τ̂RB. Every τ̂RB seconds, the

source mode transmits at most one coded packet per-layer.

We remark that the transmission of a message layer continues

until the desired fraction of multicast users has recovered it

(Section II-A). As a result, the average number of packet

transmissions can be easily related to the average time needed

to recover a layer.

Even though all the resource blocks forming the same

subchannel are mapped onto time contiguous OFDM symbols,
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they could span a different set of OFDM subcarriers every

τ̂RB seconds. For instance, subchannels could cyclically span

different frequency sub-bands, as shown in Fig. 4 (right-hand

side). In that way, the transmission of the same subchannel

across the same set of OFDM subcarriers is avoided. Hence,

users experiencing poor channel conditions across specific

OFDM subcarriers will not always be prevented from receiving

the same message layer.

In order to optimize mℓ and, indirectly, kℓ, the knowledge

of the user propagation conditions is required. Obviously,

the exact propagation conditions are unknown to the source

node. However, modern communications standards allow users

to periodically provide feedback about their average channel

conditions across the whole transmission band2. Generally, the

PER experienced by u is considered acceptable if it is smaller

than or equal to a threshold p̂. In the rest of the paper, we

will refer to the principle adopted by the LTE-A standard,

where any user u provides as propagation condition feedback

the greatest MCS index Mu such that pu(Mu) ≤ p̂, defined

as [32]:

Mu={m |m ∈ [1,M ] ∧ pu(m) ≤ p̂ ∧ pu(m+ 1) > p̂}. (10)

For these reasons, if layer ℓ is transmitted with MCS index

mℓ ≤ Mu, pu(mℓ) will be equal to or smaller than p̂. Given

the “aggregate nature” of the user channel feedback, relation

pu(Mu) ≤ p̂ is to be considered valid across the whole system

band. Hence, the notion of Mu is independent to the way

subchannels are actually transmitted across each frame.

Owing to the lack of knowledge of the user PER, during

the resource allocation phase, the source node approximates

the user PER as

pu(mℓ) ∼=

{

p̂ if mℓ ≤ Mu

1 otherwise.
(11)

In the case of S-RLNC, the proposed Sparsity-Tuning (ST)

resource allocation model is defined as follows:

ST max
p1,...,pL

m1,...,mL

‖p‖1 (12)

s.t.

U
∑

u=1

δ

(

ℓ
∑

t=1

τ
(u,t)
S-RLNC ≤

ℓ
∑

t=1

τ̂t

)

≥
ℓ
∑

t=1

Ût, ℓ = 1, . . . , L

(13)

q−1 ≤ pℓ < 1 ℓ = 1, . . . , L (14)

mℓ ∈ {1, . . . ,M} ℓ = 1, . . . , L (15)

where objective function (12) maximizes the 1-norm of vector

p = {p1, . . . , pL}, which can be equivalently expressed as
∑L

ℓ=1 pℓ. Term δ(t) is an indication function that is equal

to 1 if statement t is true, otherwise it is equal to 0. Pa-

rameters τ̂ℓ and Ûℓ represent the maximum number of coded

packet transmissions needed to recover (on average) message

layer ℓ and the minimum number of users that shall recover

layer ℓ, respectively. For these reasons, the left-hand side of

constraint (13) represents the number of multicast users that

can recover layers 1, . . . , ℓ, on average, in at most
∑ℓ

t=1 τ̂t

23GPP LTE and LTE-A standards refer to this kind of user channel feedback
as wideband Channel Quality Indicators [32].

coded packet transmissions. As a result, constraint (13) ensures

that the number of multicast users achieve QoS level ℓ is at

least equal to
∑ℓ

t=0 Ût. Since user u can only achieve QoS

level ℓ if all the layers 1, . . . , ℓ have been recovered, it would

be pointless to recover layer ℓ before layer ℓ − 1. For the

same reasons, there is no point in having situations where

the fraction of users recovering layer ℓ is greater than the

fraction of users recovering ℓ − 1. Hence, it is reasonable to

assume that the relations Ûℓ−1 ≥ Ûℓ and mℓ−1 ≤ mℓ hold, for

ℓ = 2, . . . , L. Furthermore, constraint (14) avoids both dense

coding vectors (i.e., pℓ < q−1) and all-zero coding vectors

(i.e., pℓ = 1). Then constraint (15) remarks that variable mℓ

can only take values in range 1, . . . ,M . The ST problem

can also be defined for the case of S-SRLNC by simply

replacing in constraint (13) the term τ
(u,t)
S-RLNC with τ

(u,t)
S-SRLNC.

We observe that the selection of parameters τ̂ℓ and Ûℓ, for

ℓ = 1, . . . , L, allow the ultra-reliable service to be delivered,

by meeting the Service Level Agreements (SLAs) between the

service provider and the users. In our case, SLAs imposes the

minimum fraction of users that shall achieve target QoS levels

and the maximum time needed (on average) to do so.

Because of constraint (13), the ST problem presents vast

coupling constraints among the whole set of optimization

variables. In spite of the apparent optimization complexity,

we will show that the ST problem can be efficiently solved,

both in the case of S-RLNC and S-SRLNC, by decomposing

it into subproblems of a reduced complexity. In order to do

so, it is worth solving the Layer Sparsity Maximization (LSM)

problem associated with user u, MCS index m and layer ℓ.
We will eventually refer to the LSM problem to solve the SM

problem. In particular, the LSM problem is defined as follows:

LSM-(ℓ, u,m) max
pℓ

pℓ (16)

s.t. τ
(u,ℓ)
S-RLNC ≤ τ̂ℓ (17)

q−1 ≤ pℓ ≤ 1 (18)

From Corollary 2.1, we have that τ
(u,ℓ)
S-RLNC is defined as a sum

of terms from matrix N(u,ℓ). In the following, we equivalently

rewrite constraint (17) in order to avoid the explicit inversion

of I − Q(u,ℓ) in (6), and we prove the convexity of LSM-

(ℓ, u,m).
We define the kℓ×kℓ matrix W(u,ℓ) as W(u,ℓ) = I−Q(u,ℓ).

From (6), we have that N(u,ℓ) = (W(u,ℓ))−1. Let Q
(u,ℓ)
i,j be

the (i, j)-th element of matrix Q(u,ℓ). From (29) and (5), we

have that Q(u,ℓ) is a non-negative lower-triangular matrix with

the following structure:

Q(u,ℓ)=













Q
(u,ℓ)
1,1 0 · · · 0 0

Q
(u,ℓ)
2,1 Q

(u,ℓ)
2,2 · · · 0 0

...
...

. . .
...

...

0 0 0 Q
(u,ℓ)
kℓ,kℓ−1 Q

(u,ℓ)
kℓ,kℓ













. (19)

Hence, for i and j = 1, . . . , kℓ, element (i, j) of W(u,ℓ) is

W
(u,ℓ)
i,j =







−(1− pu(m))(1 − Pℓ,kℓ−i) if i− j = 1
(1 − pu(m))(1 − Pℓ,kℓ−i) if i = j
0 otherwise.

(20)
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From (6), the following relation holds:

W(u,ℓ) ·N(u,ℓ) = I. (21)

Relation (21) defines a set of kℓ disjoint parametric systems

of equations, where pℓ is the system parameter and the

elements of N(u,ℓ) are the system unknowns. System s, for

s = 1, . . . , kℓ, consists of kℓ − s+ 1 equations. In particular,

the i-th equation of system s, for i = s, . . . , kℓ, is defined as:

i
∑

j=s

W
(u,ℓ)
i,j N

(u,ℓ)
j,s = δ(i = s). (22)

From (19), (20), the solution of system s can be expressed as

N
(u,ℓ)
i,s =

{

[(1− pu(m))(1 − Pℓ,kℓ−s)]
−1

if i = 1, . . . , kℓ
0 otherwise.

(23)

As a result we can prove the following lemma.

Lemma 3.1: The LSM-(ℓ, u,m) problem is convex. In

addition, the optimum solution of the problem is the real root

of
kℓ
∑

i=0

[(1 − pu(m))(1 − Pℓ,kℓ−i)]
−1 − τ̂ℓ = 0, (24)

which is greater than or equal to q−1 and smaller than 1.

Proof: From Corollary 2.1 and (23), we have that τ
(u,ℓ)
S-RLNC

can be equivalently rewritten as

τ
(u,ℓ)
S-RLNC =

kℓ
∑

i=0

[(1 − pu(m))(1 − Pℓ,kℓ−i)]
−1

. (25)

Since we refer to the approximation as in (3), Pℓ,kℓ−i is

the non-negative power of a pointwise maximization of two

convex functions. Hence, Pℓ,kℓ−i is convex with respect to

pℓ. Consider function (1 − pu(m))(1 − Pℓ,kℓ−i) of (25).

Since Pℓ,kℓ−i is convex, function (1− pu(m))(1−Pℓ,kℓ−i) is

concave and, hence, [(1− pu(m))(1 − Pℓ,kℓ−i)]
−1

is convex.

As a result, τ
(u,ℓ)
S-RLNC, expressed as in (25), is a non-negative

weighted sum of convex functions, which is a convex function.

For these reasons, it follows that the LSM-(ℓ, u,m) problem

is convex [40]. From (25), we rewrite constraint (17) as
∑kℓ

i=1 [(1− pu(m))(1 − Pℓ,kℓ−i)]
−1

≤ τ̂ℓ. Because of the

convexity of LSM-(ℓ, u,m), we have that the optimum so-

lution of the problem is given by the real root of (24), which

belongs to [q−1, 1).
The LSM-(ℓ, u,m) problem can be adapted to the S-

SRLNC case by simply replacing constraint (17) with

τ
(u,ℓ)
S-SRLNC ≤ τ̂ℓ. The resulting optimization problem can be

solved as follows.

Lemma 3.2: In the S-SRLNC case, the resulting LSM-

(ℓ, u,m) problem is convex, and its optimal solution is the

real root, greater than or equal to q−1 and smaller than 1, of

the following equation:

kℓ
∑

i=0

π
(u,ℓ)
i (kℓ − i) +

+

kℓ
∑

i=1

π
(u,ℓ)
i

i
∑

j=1

[(1− pu(m))(1 − Pℓ,kℓ−j)]
−1

− τ̂ℓ = 0. (26)

Proof: From Corollary 2.2 and (23), τ
(u,ℓ)
S-SRLNC can be

expressed as

τ
(u,ℓ)
S-SRLNC = π

(u,ℓ)
0 kℓ +

kℓ
∑

i=1

{

π
(u,ℓ)
i (kℓ − i)+

+ π
(u,ℓ)
i

i
∑

j=1

[(1− pu(m))(1 − Pℓ,kℓ−j)]
−1

}

. (27)

Likewise Lemma 3.1, τ
(u,ℓ)
S-SRLNC is convex because it is the

non-negative weighted sum of convex functions. Then the

proof follows exactly the same reasoning as in the proof of

Lemma 3.1.

Once more, consider the ST problem and the following

remark.

Lemma 3.3: Constraint (13) of the ST problem can be

equivalently rewritten as

U
∑

u=1

δ
(

τ
(u,ℓ)
S-RLNC ≤ τ̂ℓ

)

≥ Ûℓ, ℓ = 1, . . . , L. (28)

or restated for the S-SRLNC case, in a similar way.

Proof: From Section III-A, relation τ
(u,t)
S-RLNC ≤ τ̂t shall

hold, for at least Ût users. Hence, the complete statement of the

argument of function δ(·) in (13) is equivalent to the following

system of inequalities











ℓ
∑

t=1

τ
(u,t)
S-RLNC ≤

ℓ
∑

t=1

τ̂t

τ
(u,t)
S-RLNC ≤ τ̂t, for t = 1, . . . , ℓ.

(29)

We observe that the first inequality is made redundant by the

remaining ones. Hence, (13) can be rewritten as

U
∑

u=1

δ

(

ℓ
∧

t=1

τ
(u,t)
S-RLNC ≤ τ̂t

)

≥

ℓ
∑

t=1

Ût, for ℓ = 1, . . . , L, (30)

where the leftmost term still counts exactly the same number

of users achieving QoS level ℓ as in (13). Consider layer t, it

shall be received by at least Ût users, for t = 1, . . . , L. Hence,

the complete statement of (30), for a given ℓ, is






















U
∑

u=1

δ

(

ℓ
∧

t=1

τ
(u,t)
S-RLNC ≤ τ̂t

)

≥

ℓ
∑

t=1

Ût,

U
∑

u=1

δ
(

τ
(u,t)
S-RLNC ≤ τ̂t

)

≥ Ût, for t = 1, . . . , ℓ.

(31)

We remark that relations Ûℓ−1 ≥ Ûℓ and mℓ−1 ≤ mℓ hold,

for ℓ = 2, . . . , L. In addition, from the considered PER

model (11), we have that the set of users achieving QoS level

ℓ entirely contains those achieving QoS levels 1, . . . , ℓ − 1.

Hence, the first inequality of (31) is made redundant by the

following ones. That completes the proof. This proof can be

similarly restated for the S-SRLNC case.

From Lemma 3.3, ST can be decomposed into L indepen-

dent optimization problems ST-(1), . . . , ST-(L), where the ST-

(ℓ) problem: (i) refers to the video layer ℓ, (ii) has the goal

of maximizing pℓ, and (iii) refers to just the constraints of ST
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that are related to layer ℓ. ST-(ℓ) problem can be solved as

follows.

Remark 3.1: From Lemmas 3.1 and 3.2, we have that

τ
(u,ℓ)
S-RLNC and τ

(u,ℓ)
S-SRLNC are non-decreasing functions with respect

to pℓ, for q−1 ≤ pℓ < 1. In addition, for a given value of pℓ,

we remark that as mℓ increases, the value of τ
(u,ℓ)
S-RLNC will

decrease as well (Section II). Hence, ST-(ℓ) is solved by the

pair (mℓ, pℓ) characterized by the greatest values of mℓ and pℓ
such that relations τ

(u,ℓ)
S-RLNC ≤ τ̂ℓ or τ

(u,ℓ)
S-SRLNC ≤ τ̂ℓ hold, for at

least Ûℓ users. In particular, ST-(ℓ) can be solved by resorting

to LSM problems as follows. For any mℓ = 1, . . . ,M and

ℓ = 1, . . . , L, let Umℓ
signify the set of users such that

Mu ≥ mℓ.

1. Let us solve LSM-(ℓ, u,m), for a user u ∈ Umℓ
and

m = mℓ. Let p∗ℓ,mℓ
be the optimum solution of LSM-

(ℓ, u,mℓ). If S-RLNC is in use then the value of p∗ℓ,mℓ

is derived as provided by Lemma 3.1. On the other hand,

if S-SRLNC is in use then we will refer to Lemma 3.2, for

the computation of p∗ℓ,mℓ
. Since pu(m) is approximated as

in (11), the solution p∗ℓ,mℓ
will always be the same, for

every user in Umℓ
.

2. For any mℓ = 1, . . . ,M such that |Umℓ
| ≥ Ûℓ and

an optimum solution p∗ℓ,mℓ
exists, the pair (mℓ, p

∗

ℓ,mℓ
)

is an optimum solution of ST-(ℓ). Among the optimum

solutions of problem ST-(ℓ), we choose the pair (mℓ, p
∗

ℓ,mℓ
)

associated with the greatest MCS index, i.e., we consider

the solution that ensures the smallest value of kℓ (see

Section II).

The process is repeated to solve any problem ST-(ℓ), for

ℓ = 1, . . . , L and, hence, to solve problem ST. We observe

that, for a given value of mℓ, the pair (mℓ, p
∗

ℓ,mℓ
) may not

exist. That can happen because: (i) the value of τ̂ℓ is too

small and the average number of coded packet transmissions

always exceed τ̂ℓ, for q−1 ≤ pℓ < 1, and/or (ii) the target user

coverage Ûℓ is too big (constraint (28) is not met), given the

overall user propagation conditions and, hence, the MCSs that

can be used in a considered scenario.

For these reasons and, in particular, from Lemmas 3.1, 3.2

and 3.3, it is immediate to prove the following theorem.

Theorem 3.1: Both in the S-RLNC and S-SRLNC cases,

the resource allocation solution of ST problem derived by

Remark 3.1, for any ℓ = 1, . . . , L, is optimal and characterized

by the greatest MCS indexes, i.e., the derived optimal solution

ensures the smallest values of kℓ, for ℓ = 1, . . . , L.

IV. NUMERICAL RESULTS

A. Assessment of the Performance Model

We recall from Section II-B that we mitigated the lack of

an accurate expression of the probability Pℓ,t that a sparse

random (t+1)× kℓ matrix is not full-rank over GF(q), given

that the first t rows are linearly independent. In particular, we

upper-bounded the value of Pℓ,t by referring to the approx-

imation in (3). Hence, the average user delay values τ
(u,ℓ)
S-RLNC

(Corollary 2.1) and τ
(u,ℓ)
S-SRLNC (Corollary 2.2) are expected to be

greater than or equal to the correspondent average user delay

values obtained via computer simulations. In this paper, all

pℓ

τ
(u

,ℓ
)

S
−
R
L
N
C

0.5 0.6 0.7 0.8 0.9 110

20

30

40

50

60

70

80

90

100

 

 

kℓ = 10
kℓ = 30
kℓ = 50
kℓ = 70
Simulations
Upper-Bound

(a) q = 2

pℓ

τ
(u

,ℓ
)

S
−
R
L
N
C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

20

30

40

50

60

70

80

90

100

 

 

kℓ = 10
kℓ = 30
kℓ = 50
kℓ = 70
Simulations
Upper-Bound

(b) q = 28

Fig. 5. Average number of coded packet transmissions vs. the average number
of coded packet transmissions obtained by referring to the approximation as
in (3), for q = 2 and 28.

the computer simulations rely on the encoders and decoders

provided by the Kodo C++ network coding library [14].

Fig. 5 refers to a scenario, where a source message of

kℓ ∈ {10, 30, 50, 70} source packets is transmitted to a user by

means of S-RLNC, over a fully reliable channel (i.e., the user

PER is equal to 0). In particular, Fig. 5a compares, for q = 2,

the value of τ
(u,ℓ)
S-RLNC as in Corollary 2.1 with that obtained by

simulations, as a function of the probability pℓ of selecting a

zero coding coefficient. Fig. 5b reports the same performance

comparison, in the case of q = 28. Figs. 5a and 5b show that,

for pℓ = q−1, simulation and our theoretical upper-bound of

τ
(u,ℓ)
S-RLNC overlap. In fact, from Remark 2.1, in that case, (3)

no longer is an approximation. However, the gap between the

theoretical upper-bound and simulation results increases, as pℓ
becomes larger than q−1.

Let us focus on S-RLNC such that pℓ ≥ q−1, regardless of

the value of q, we observe that the performance gap between

the theoretical upper-bound and simulation results mainly

depends only on the value of kℓ and pℓ. On the other hand,

for large values of kℓ (such as, kℓ ≥ 50) and pℓ (pℓ ≥ 0.93),

the value of the performance gap, normalized with respect to

kℓ, is almost constant and equal to 0.53. In other words, the

impact of q on the performance gap is not pivotal and, at

the same time, it is mainly proportional to kℓ. Given that the

simulation results reported in Section IV-B refer to values of

kℓ and pℓ in the aforementioned ranges, that gives a clear

upper-bound of the impact of our approximation onto the

displayed performance, on a layer-basis. Since S-RLNC can

be considered a special case of S-SRLNC, the aforementioned

considerations also apply to the systematic case.

We observe that the theoretical upper-bound is no more than

33.4% higher than simulation results, in the considered cases.

As one of the key aspects in our optimization framework is

the enforcement of service coverage constraints, the adoption

of the approximation as in (3) will indeed not violate those

service constraints. Ideally, if the exact expression of τ
(u,ℓ)
S-RLNC
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and τ
(u,ℓ)
S-SRLNC were known, we would get ST solutions char-

acterised by a greater level of sparsity. In addition, from an

implementation perspective, it is not feasible to tabulate the

exact values of τ
(u,ℓ)
S-RLNC and τ

(u,ℓ)
S-SRLNC as a function of pℓ and

kℓ. In particular, we remark that the value of kℓ is given by

the layer bit length and the adopted MCS, which cannot be

determined in advance.

B. Performance Evaluation of the Proposed Resource Alloca-

tion Models

The performance of the proposed resource allocation mod-

eling has been investigated in an LTE-A scenario composed

by 19 base stations arranged in two concentric rings and

centered on a target base station. Each base station manages

three hexagonal sectors per cell. In addition, for the physical

layer parameters, we referred to the 3GPP’s benchmark Case 1
scenario [41], where base stations are characterized by an

inter-site distance of 500 m. In order to meet the LTE-A

physical layer constraints, each coded packet is mapped on

resource blocks spanning a bandwidth of 540 kHz and 12
OFDM symbols (lasting for τ̂RB = 10 ms). In accordance to

a well documented best practice in the deployment of LTE-A

networks [32], the reception of a resource block is regarded as

acceptable when p̂ is equal to 0.1. The reader who may want to

have more details about the simulator and the considered low-

level transmission parameters, can refer to [12, Section V].

Due to space limitations, all those details have been omitted.

In our performance investigation, we referred to a network

scenario where the target base station multicasts a layered

video stream to a user MG, also known as Single Cell-

eMBMS (SC-eMBMS) transmission mode. Furthermore, we

considered a user distribution characterized by the maximum

heterogeneity from the point of view of the channel conditions.

In particular, we refer to a MG of U = 80 users that

are regularly placed along the symmetry axis of one sector

controlled by the target base station. The first user is 90 m

apart from the center of the cell, and the distance between

two consecutive users is 2 m.

In this section, we consider two different video sequences

(Stream A and Stream B) of 30 s, compressed according to

the H.264/SVC standard [33]:

• Stream A [42] - is a L = 3 video trace characterized by

{b1, b2, b3} = {702, 4841, 20584} KBytes per layer.

• Stream B [42] - is a L = 4 video trace such that

{b1, b2, b3, b4} = {702, 2138, 6001, 19384} KBytes per

layer.

The video traces implement the coarse grain scalability prin-

ciple, which is a form of spatial scalability such that the com-

bination of consecutive layers enhances the frame resolution.

In addition, both video traces belong to the database presented

in [5], and developed for network performance evaluation

purposes. The video traces have a resolution of 352 × 288,

a Group of Picture size of 16 frames and a video frame rate

of 30 fps.

In our numerical results, a 30 s video trace defines one lay-

ered source message. Each video layer has the same duration

of the whole video trace. For simplicity, we impose that each
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Fig. 6. Average transmission footprint τ (u,1:ℓ), expressed in terms of number
of packet transmissions, in the case of Stream A, for ℓ = 1, . . . , 3, q = 2
and 28.

video layer shall be recovered by the same average number τ̂
of coded packet transmissions, i.e., τ̂1 = τ̂2 = . . . = τ̂L = τ̂ .

From constraint (13), we have that QoS level ℓ shall be

achieved, on average, in
∑ℓ

t=1 τ̂t = ℓτ̂ coded packet trans-

missions. Since the time duration of each resource block is

fixed, it is immediate to equivalently express τ̂ in seconds,

denoted as “τ̂ (sec.)”.

We compared the optimized version of S-RLNC and S-

SRLNC (see Section III-A) against their non-sparse versions.

In order to provide a fair comparison among the strategies,

when either RLNC or SRLNC is used, the MCS indexes

m1, . . . ,mL associated to the transmission of each video layer

are optimized such that the service constraints are met, for

pℓ = q−1.

Let us define the average transmission footprint τ (u,1:ℓ) as

τ (u,1:ℓ) =























ℓ
∑

t=1

τ
(u,t)
S−RLNC, for S-RLNC

ℓ
∑

t=1

τ
(u,t)
S−SRLNC, for S-SRLNC.

(32)

That definition can be easily extended to the non-sparse

version of RLNC and SRLNC by considering a value of pℓ
equal to q−1. We remark that in the rest of this section, all the

user performance investigation has been carried out via com-

puter simulations. The approximated performance modeling of

Section II-B is used only by the target base station during the

resource allocation operations.

Figs. 6a and 6b show the value of τ (u,1:ℓ) provided by all

the considered network coding schemes when Stream A is

multicast, in the case of q = {2, 28} and for τ̂ (sec.) equal

to 0.5 s. Since users are regularly distributed along with a
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Fig. 7. Expected value and scaled PMF of X, in the case of RLNC and for
q = 2 and pℓ = 1/2. The rightmost figure refers to case where kℓ = {30, 70}
and pu = 0.

segment connecting the target base station with the cell edge,

we have that: (i) τ (u,1:ℓ) can be equivalently expressed as a

function of the distance form the center of the cell, and (ii)

the target number of users Ûℓ that shall receive video layer ℓ
can be equivalently expressed in terms of distances from the

center of the cell (vertical dashed lines in Figs. 6a and 6b). On

the other hand, the horizontal dashed lines in Figs. 6a and 6b

represents the maximum transmission footprint to achieve QoS

level ℓ, namely,
∑ℓ

t=1 τ̂t.
From Fig. 6 and regardless of the network coding strategy in

use, we observe that the values of τ (u,1:ℓ) when q = 2 are very

close to those obtained when q = 28. In particular, the greatest

performance gap is associated in the case of RLNC and it

is smaller than 6 coded packets. In general, the performance

differences between the case where q = 2 and the case q = 28

tend to vanish as we refer to the optimized S-RLNC or S-

SRLNC strategies. The reasoning behind the aforementioned

behaviour is given in the following remark.

Remark 4.1: Let X be a random variable expressing the

number of coded packet transmissions needed to recover a

message layer composed of kℓ source packets transmitted via

the RLNC principle, for pℓ = 1/q. Fig. 7a shows, for different

values of pu, the expected value of X that is E[X] = τ
(u,ℓ)
S−RLNC.

In Fig. 7a, we observe that the values of E[X] derived when

q = 2 are close to those obtained when q = 28, regardless of

the value of pu. For simplicity, let us refer to the case where

pu = 0 and pℓ = 1/q. From [12, Eq. (6)], the Probability

Mass Function (PMF) Pr[X = r] = φ
(u,ℓ)
X (r) of X can be

expressed as follows:

φ
(u,ℓ)
X (r)=























kℓ−1
∏

i=0

[

1− qi−r
]

, if r = kℓ

kℓ−1
∏

i=0

[

1− qi−r
]

−

kℓ−1
∏

i=0

[

1− qi−r+1
]

, if r > kℓ.

(33)

Hence, in this case, the expected value of X can be alter-

natively expressed as E[X] =
∑

∞

r=kℓ
r · φ

(u,ℓ)
X (r). Fig. 7b

shows the product of terms r · φ
(u,ℓ)
X (r) as a function of r,

for kℓ = {30, 70} and q = {2, 28}. In the case of q = 2, we

observe that the product r · φ
(u,ℓ)
X (r) and hence, the PMF of

X is non-zero across several values of r ≥ kℓ, for both of the

considered values of kℓ. On the other hand, the PMF of X is

non-zero almost for r = kℓ, when q = 28. Considering a target

value of kℓ and q = 2, from Fig. 7b, we can infer that the
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Fig. 8. Average footprint ratio ω(u,1:ℓ) in the case of Stream A (Stream B),
for ℓ = 1 and 3 (ℓ = 1 and 4) and q = 2.

sum of non-zero terms r ·φ
(u,ℓ)
X (r), i.e., E[X] is barely greater

than or equal to the correspondent sum of terms obtained by

considering q = 28. In fact, in the case of kℓ = 30 (kℓ = 70),

E[X] is equal to 31.6 and 30 (71.6 and 70), for q = 2 and

28, respectively. We thus observe that, even though the PMFs

of X for q = 2 and q = 28 are significantly different, the

corresponding average values of X are comparable. On the

other hand, for a given r ≥ 0, we observe that the probability

value Pr[X ≤ r] may vary significantly as the value of

q changes. The same reasoning can be easily extended for

different values of PER and applies to all the RLNC strategies

discussed in this paper. In addition, that explains the reason

way scenarios where q = 2 and q = 28 perform similarly from

the point of view of the average transmission footprint.

Consider Fig. 6, we observe that all the considered network

coding strategies can meet the services coverage constraints,

for the considered values of τ̂ and Ûℓ. However, since the

optimized S-RLNC and S-SRLNC strategies are characterized

by values of pℓ (for any ℓ = 1, . . . , L) that are greater

than q−1, the probability of transmitting non-degenerate coded

packets associated with all-zero coding vectors is likely to

increase. Hence, the average transmission footprints provided

by S-RLNC and S-SRLNC are greater than those associated

with the optimized RLNC and SRLNC strategies.

The aforementioned increment in the average transmission

footprint has been investigated in Fig. 8a, where we reported

the ratio ω(u,1:ℓ) (called “average footprint ratio”) between

the values of τ (u,1:ℓ) provided by the S-RLNC (S-SRLNC)

and RLNC (SRLNC) strategies, for the QoS levels 1 and

3, and q = 2. We note that if ω(u,1:ℓ) is equal to 1, the

considered sparse network coding strategy provides the same

average transmission footprint of the correspondent non-sparse
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technique. Fig. 8a also shows the same performance metrics

for two modified versions of S-RLNC and S-SRLNC, hereafter

referred to as “Pruned S-RLNC” and “Pruned S-SRLNC”.

Those two strategies behave as the proposed optimized S-

RLNC and S-SRLNC but in the pruned versions, the target

base station does not transmit non-degenerate coded packets

associated with all-zero coding vectors. It is straightforward to

prove that if a non-pruned sparse RLNC strategy meets the op-

timization constraints, the correspondent pruned strategy will

do the same. From Fig. 8a we observe that the ω(u,1:ℓ) values

provided by the S-RLNC at the target distances associated with

Û1 and Û3 are equal to 9.4 and 3.9, respectively. However, in

the case of the Pruned S-RLNC, the average footprint ratios

drop to 3.9 and 2.8, for the QoS levels 1 and 3, respectively.

With regards to the optimized S-SRLNC strategy, the ω(u,1:ℓ)

values associated with the QoS level 1 and 3 are equal to 10.2
and 2.4, respectively. However, also in this case, the Pruned

S-SRLNC provides smaller average footprint ratios: 2.9 and

2.1, for the first and the third QoS levels, respectively.

We also observe from Fig. 8a that the ω(u,1:ℓ) values pro-

vided by (non-Pruned and Pruned) S-RLNC strategies tend to

be constant, while the ω(u,1:ℓ) values related to the S-SRLNC

strategies increase as the distance from the target base sta-

tion grows. That behavior can be explained by the fact that

non-systematic network coding strategies require to multicast

coded packets from the beginning, while systematic techniques

multicast coded packets only after the systematic packets have

been transmitted. Hence, as the distance from the center of

the cell increases, i.e., as the user propagation conditions get

worse, the number of systematic packets successfully received

decreases. In those cases, a user needs more coded packets to

recover a video layer. However, it is worth noting that the

optimized non-Pruned S-SRLNC and, specifically, the Pruned

S-SRLNC strategies provide values of ω(u,1:ℓ) that drop below

1.6 for distances that are 22 m and 20 m smaller than the

desired coverage, for the QoS level 1 and 3, respectively. The

aforementioned analysis applies also in the case of Stream B,

Fig. 8b.

The performance of the considered network coded strategies

has been also compared in terms of the complexity of the

decoding operations. Likewise to the definition of τ (u,1:ℓ), we

define the average number ǫ(1:ℓ) of decoding operations needed

to recover the first ℓ video layers as follows:

ǫ(1:ℓ) =























ℓ
∑

t=1

ǫ
(t)
S−RLNC, for S-RLNC

ℓ
∑

t=1

ǫ
(t)
S−SRLNC, for S-SRLNC.

(34)

Also in this case, the definition of ǫ(1:ℓ) can be extended to

the non-sparse version of the RLNC and SRLNC, by referring

to a value of pℓ = q−1, for ℓ = 1, . . . , L. In the case of non-

sparse RLNC and S-RLNC, we remark that the value of ǫ(1:ℓ)

is independent from the value of the user PER. On the other

hand, in the non-sparse SRLNC and S-SRLNC, the number

of decoding operations grows as the number of successfully

received systematic packets decreases; that happens when

the user PER increases. To this end, for all the systematic
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Fig. 9. Average number of decoding operations ǫ(1:3) and ǫ(1:4) in the case
of Stream A and B, for q = 2 and q = 28. For RLNC and SRLNC, τ̂ is set
equal to 0.2. Different colours represents the contribution of each layer to the
value of ǫ(1:3) and ǫ(1:4).

strategies, we evaluated ǫ(1:ℓ) by referring to a user PER equal

to p̂.

Fig. 9a shows the value of ǫ(1:L) provided by all the

considered strategies, in the case of Stream A, for q = {2, 28}.

We recall from Section III that we refer to just the fundamental

finite field operations performed by a Gaussian Elimination-

based decoder. Hence, the reception of coded packets as-

sociated with all-zero coding vectors has no impact on the

number of the considered operations. As a consequence, the

Pruned and non-Pruned versions of S-RLNC and S-SRLNC

are characterized by the same values of ǫ(1:ℓ).

Let us consider the S-RLNC strategy in Fig. 9a, it provides

values of ǫ(1:L) that are up to 92.5% and 97.08% smaller

than those provided by the non-sparse RLNC, for q = 2 and

q = 28, respectively. In particular, as expected, the value of

ǫ(1:L) reduces as the target service transmission time τ̂ (sec.)

grows. On the other hand, the S-SRLNC strategy ensures

values of ǫ(1:L) that are up to 57% and 74.8% smaller than

those associated with the non-sparse SRLNC, for q = 2 and

q = 28, respectively. Regardless on the value of q, we observe

that the systematic strategies provide values of ǫ(1:L) that

are significantly smaller than those given by non-systematic

techniques. That is due to the fact that the decoder may rely on

a subset of the systematic packets that have been successfully

received and do not need to be decoded. We also observe

that in the case of q = 28, both the non-sparse and sparse

strategies are characterized by values of ǫ(1:L) that can be up

to 50.2% greater than in the case where q = 2. We repeated the

same performance investigation for Stream B. However, due

to space limitations, we provide results only in terms of ǫ(1:L),

in Fig. 9b. Also in this case, the discussion and conclusions
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that we provided for Fig. 9a also apply.

The key points of this discussion can be summarized as

follows: (i) In the considered cases, the adoption of the finite

field size q = 28 provides just a minimal reduction in terms

of average transmission footprint and significantly increases

the complexity of the decoding operations, if compared to

the q = 2 case, (ii) The adoption of either the Pruned

S-RLNC or Pruned S-SRLNC ensures a significant reduction

in the average number of decoding operations, (iii) The

Pruned S-SRLNC strategy ensures the best tradeoff between

transmission footprint and decoding complexity.

V. CONCLUSIONS

In this paper, we addressed the issue of the complexity

associated to a generic network coding decoder. In particular,

we referred to a multicast network scenario where a layered

service is transmitted to a set of users.

Based on the proposed modeling, we referred to a scenario

where the layered service was delivered in an ultra-reliable

fashion. By referring to both the S-RLNC and S-SRLNC

strategies, we proposed a constrained convex resource alloca-

tion framework suitable for jointly optimizing both the MCS

indexes and the code sparsity to be used in the multicasting

of each service layer. The objective of the optimization model

is that of maximizing the sparsity of the code associated with

each layer, and hence, minimizing the number of operations

performed by a generic network coding decoder employing

Gaussian Elimination. We also showed that the aforementioned

computation complexity reduction can be directly mapped

onto a computational processing reduction, which allows to

eventually prolong the battery life of mobile devices.

As shown by the provided numerical results, the average

transmission footprint is likely to increase as the sparsity of

the code grows. However, the average transmission footprint

can be greatly improved by simply avoiding the transmissions

of coded packets associated with all-zero coding vectors, as

happens with the Pruned S-RLNC and Pruned S-SRLNC

strategies. We observed that the proposed optimization ensures

a reduction in the average number of decoding operations of

at least 92% and 57%, if compared to the classic non-sparse

S-RLNC and S-SRLNC techniques, respectively. We remark

that the proposed decoding complexity reduction is obtained

without altering the actual implementation of the decoder.
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[29] J. Blömer, R. Karp, and E. Welzl, “The Rank of Sparse Random Matrices
Over Finite Fields,” Random Structures & Algorithms, vol. 10, no. 4,
pp. 407–419, 1997.

[30] C. Cooper, “On the Asymptotic Distribution of Rank of Random
Matrices Over a Finite Field,” Random Structures & Algorithms, vol. 17,
no. 3-4, pp. 197–212, 2000.

[31] ERICSSON AB, “5G Radio Access,” Tech. Rep., Feb. 2015. [Online].
Available: http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf

[32] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution.
John Wiley & Sons, 2011.

[33] ITU-T H.264, “Advanced Video Coding for Generic Audiovisual Ser-
vices,” Tech. Rep., Nov. 2007.

[34] R. Afolabi, A. Dadlani, and K. Kim, “Multicast Scheduling and Re-
source Allocation Algorithms for OFDMA-Based Systems: A Survey,”
IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 240–254, First 2013.

[35] C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “Efficient Broadcasting
Using Network Coding,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp.
450–463, Apr. 2008.

[36] A. Cohen, B. Haeupler, C. Avin, and M. Médard, “Network Coding
Based Information Spreading in Dynamic Networks With Correlated
Data,” IEEE J. Sel. Areas Commun., vol. 33, no. 2, pp. 213–224, Feb.
2015.

[37] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact Decoding
Probability Under Random Linear Network Coding,” IEEE Commun.
Lett., vol. 15, no. 1, pp. 67–69, Jan. 2011.
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