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Reliability of Broadcast Communications Under
Sparse Random Linear Network Coding

Suzie Brown, Oliver Johnson and Andrea Tassi

Abstract—Ultra-reliable Point-to-Multipoint (PtM) communi-
cations are expected to become pivotal in networks offering
future dependable services for smart cities. In this regard, sparse
Random Linear Network Coding (RLNC) techniques have been
widely employed to provide an efficient way to improve the
reliability of broadcast and multicast data streams. This paper
addresses the pressing concern of providing a tight approximation
to the probability of a user recovering a data stream protected
by this kind of coding technique. In particular, by exploiting the
Stein–Chen method, we provide a novel and general performance
framework applicable to any combination of system and service
parameters, such as finite field sizes, lengths of the data stream
and level of sparsity. The deviation of the proposed approxi-
mation from Monte Carlo simulations is negligible, improving
significantly on the state of the art performance bounds.

Index Terms—Sparse random network coding, broadcast com-
munication, multicast communications, Stein–Chen method.

I. INTRODUCTION

In next-generation networks, reliable broadcast communi-
cation is expected to be critical. In particular, this holds true
in future networks of self-driving vehicles where road-side
base stations (BSs) will broadcast live sensor data [1]. For
example in the 5G-PPP’s “bird’s eye” use case, live 3D Light
Detection and Ranging (LiDAR) scans of vehicles engaging
a traffic junction are broadcast to the incoming vehicles –
enabling them to take an informed decision on how to safely
drive through the junction [1]. In this kind of network, a
key performance indicator is the user delivery probability,
defined as the probability of a user successfully recovering
the transmitted data stream.

Generally, modern communication systems enhance the re-
liability of Point-to-Multipoint (PtM) data streams by employ-
ing Application Level-Forward Error Correction (AL-FEC)
techniques, which are usually based on Luby Transform (LT)
or Raptor codes [2], [3]. These kinds of codes only operate to
their capacity if large block lengths are employed, which could
be a problem in the presence of delay-sensitive services [2].
For this reason, in our system model reliability of PtM data
streams is ensured via the Random Linear Network Coding
(RLNC) approach [4].
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The RLNC approach requires the BS to split each PtM data
stream into K source packets, which form a source message.
A sequence of coded packets is obtained in a rateless fashion
by linearly combining the source packets. A user recovers the
PtM data stream as soon as it collects K linearly independent
coded packets [4], [5]. A drawback of the RLNC approach is
the computational complexity of the decoding phase, which is
a function of K and the finite field size q considered during
the encoding phase [6], [7]. Tassi et al. [8] observed that this
complexity can be significantly reduced by adopting a sparse
implementation of the RLNC approach, where the number of
non-zero elements in the encoding matrix is smaller. However,
as the encoding matrix becomes sparser, the number of coded
packet transmissions needed by a user to recover the source
message is likely to increase. To date, an exact expression for
the user delivery probability as a function of the sparsity and
number of coded packet transmissions is still unknown.

The key contribution of this paper is a tight approximation
to the user delivery probability in a system where broadcast
source messages are protected by sparse RLNC (see Sec-
tion III). Our approximation is valid for any finite field size,
sparsity level, and data stream length. As shown in Section IV,
the deviation of the proposed model from simulation results
is negligible. Our approximation enables service providers
to increase the sparsity level (reducing the complexity of
the decoding phase) while ensuring a target user delivery
probability.

The lack of an exact performance model for sparse RLNC
implementations is caused by the lack of an accurate expres-
sion for the probability of a sparse random matrix, generated
over a finite field, being full rank [6], [8], [9]. Garrido et
al. [6] proposed models based on absorbing Markov chains
to characterize the user performance, in a particular im-
plementation of sparse RLNC where the number of source
packets employed to generate each coded packet is fixed. This
assumption significantly simplifies the performance modeling
issue, yet [6] mostly relies on Monte Carlo simulation to
estimate, via a regression technique, the statistical correlation
between the rows of full rank sparse matrices.

Unlike [6], this paper refers to a more general sparse RLNC
scheme where a source packet participates in the generation
of a coded packet with probability 1 − p, for 0 ≤ p ≤ 1.
With regards to this general sparse RLNC formulation, Tassi et
al. [8] proposed the first performance model valid for any finite
field size, data stream length and probability p. In particular,
the probability bound proved in [10, Theorem 6.3] allowed
the authors [8] to derive a tractable but not tight performance
bound. More recently, the theoretical framework proposed by
A. Khan et al. [11] extended [10, Theorem 6.3] and can be
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directly used to upper- and lower-bound the user delivery
probability. However, again often these bounds are not tight.

In this paper, we address the limitations of the previous
studies and provide the following contributions:
• We propose an accurate expression for the user delivery

probability suitable for general sparse RLNC formu-
lations and applicable to any combination of system
parameters, which overcomes the lack of generality of the
model proposed in [12] and [6]. In particular, with regards
to [6], a new set of Monte Carlo simulations are required
to re-derive a performance model as the field size, the
number of source packets defining a source message or
the number of source packets involved in the generation
of each coded packet changes.

• Unlike most recent works [8], [11] which build upon [10,
Theorem 6.3], we approximate the user delivery prob-
ability by employing a novel mathematical framework
based on the Stein-Chein method. In fact, for K > 10
and p ≥ 0.7, [10, Theorem 6.3] notoriously is not a
tight lower-bound to the probability of a sparse random
matrix being full rank [8], with a subsequent impact on
the estimation of the user delivery probability.

• Regardless of the field size and level of sparsity of the
encoding matrix, our approximation of the user delivery
probability is very close to simulated values. On the other
hand, the state of the art upper- and lower-bound to the
user delivery probability proposed in [11] significantly
deviate from Monte Carlo simulations for a binary field,
with the lower-bound performing better than the upper-
bound. For larger field sizes, both our approximation
and the upper-bound as per [11] to the user delivery
probability tightly follow simulation results but, in this
case, the lower-bound as per [11] significantly deviates
from our Monte Carlo simulations. As such, unlike our
approximation, neither the upper-bound nor lower-bound
consistently give a tight approximation of the user deliv-
ery probability, regardless of the field size.

The rest of the paper is organized as follows. Section II
presents the considered system model. Section III discusses
the proposed performance characterization model for sparse
RLNC implementations and states our novel approximate
result in Theorem 3.1. The accuracy of the proposed perfor-
mance model is considered using Monte Carlo simulation in
Section IV. Finally, in Section V, we draw our conclusions.

II. SYSTEM MODEL

We consider a system model where one transmitter broad-
casts a stream of coded packets to multiple receiving nodes,
over a channel with packet error probability equal to ε. We
assume that the transmission time of a coded packet is equal
to one time step, and that the time needed to transmit N coded
packets is equal to N time steps.

We say that a source message consists of K source packets
{si}Ki=1 where si consists of L elements of a finite field Fq

of size q. A coded packet cj is also formed by L elements
from Fq and is defined as cj =

∑K
i=1 gi,j · si where gi,j ∈ Fq

is referred to as a coding coefficient. Provided that N coded
packets have been broadcast by the transmitter, the input to

the broadcast channel can be expressed in matrix notation as
[c1, . . . , cN ] = [s1, . . . , sK ] · G. The K × N matrix G is
defined by elements gi,j , i.e., G ∈ FK×N

q . Coding coefficients
are chosen at random over Fq , in an identical and independent
fashion according to the following probability law [8]:

P (gi,j = v) =

 p if v = 0
1− p
q − 1

otherwise, (1)

where 0 ≤ p ≤ 1. The greater the value of p, the more likely
that a coding coefficient is equal to 0, so we observe that the
average number of source packets actively participating in the
generation of a coded packet is a function of p. The ‘classic’
RLNC scheme refers to p equal to 1/q [8] (so the coding
coefficients are uniform on Fq), ‘sparse’ RLNC schemes are
characterized by p > 1/q.

Let {cj}nj=1 be the set of coded packets that have been
successfully received by a user, for 0 ≤ n ≤ N . At the
receiving end, each user populates a K × n decoding matrix
M with the n columns of G associated with the n coded
packets that have been successfully received. Finally, relation
[c1, . . . , cn] = [s1, . . . , sK ] ·M holds. The source message
is recovered as soon as M becomes full rank and hence, M
contains a K ×K invertible matrix.

III. PERFORMANCE ANALYSIS

Based on [4], we observe that the probability of a user to
recover a source message, i.e., the user delivery probability,
as a function of ε can be expressed as follows:

R(ε) =

N∑
n=K

(
N

n

)
(1− ε)nεN−nRK,n(p), (2)

where RK,n(p) is the probability of a K×n decoding matrix
being full rank, as a function of p. In the case of classic
RLNC, it is known that RK,n(p)∣∣

p=1/q

=
∏K−1

t=0

[
1− 1

qn−t

]
exactly [4]. For sparse RLNC schemes, an exact expression
for RK,n(p) is still unknown but, as proposed in [11], it can
be approximated by means of the following lower-bound

RK,n(p) ≥ 1−min

{
ηmax(n);

K∑
t=1

(
K

t

)
(q − 1)t−1ρt

}
(3)

and upper-bound

RK,n(p) ≤ 1−max

{
ηmin(n);

K∑
t=1

(
K

t

)
pnt(1− pn)K−t

}
(4)

where ηmax(t) = 1 −∏K−1
w=0

[
1−

(
max

{
p, 1−pq−1

})t−w]
and

ηmin(t) = 1−∏K−1
w=0

[
1−

(
min

{
p, 1−pq−1

})t−w]
. From [10],

it follows that ηmax(t) and ηmin(t) are the lower- and upper-
bound to the probability, for t ≤ K, of a K× t being non-full
rank, respectively. Finally, we write ρ` for the probability that
any set of ` rows of a K × n matrix sums to the zero vector
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in Fq , which can be expressed (directly following from [9,
Eq. (5)]), for ` = 1, . . . ,K and n ≥ K, as:

ρ`
.
=

[
1

q

(
1 + (q − 1)

(
1− q(1− p)

q − 1

)`
)]n

. (5)

Both (3) and (4) are based on ηmax(t) and ηmax(t), which
essentially account for the event that some sets of rows form
a non-full rank matrix. Overall, 1 − ηmax(t) and 1 − ηmin(t)
give a notoriously not tight approximation of RK,t(p). This
holds true especially for K > 10 and p ≥ 0.7 [8]. In addition,
the right-hand terms in the minimization of (3) and in the
maximization of (4) represent the probability of having any set
of rows that linearly combined sums to the zero vector and
the probability of having any groups of rows that are equal
to the zero vector, respectively. In both cases, these events
are significantly different to the event that some submatrix in
M is not full rank – thus impacting on the tightness of (3)
and (4). In the remainder of this section, we address this issue
by providing a novel expression for RK,n(p), which tightly
approximates the user delivery probability across a large range
of system parameters.

A. Proposed Performance Model for Sparse RLNC

Therefore, we consider the key research question: Given a
K×n decoding matrix M, formed according to the probability
model (1), what is the probability that M has rank K?
We remark that for n < K, the source message cannot be
recovered, i.e., RK,n(p) is equal to 0. In the remainder of this
section, we focus on the case where n ≥ K and we wish to
know whether the K rows of M form a linearly independent
set, i.e., the rank of M is K. We give the following definition.

Definition 3.1: Write R .
= {1, 2, . . . ,∑K

t=1

(
K
t

)
} =

{1, 2, . . . , 2K − 1} for a set of labels. For each r ∈ R,
we regard Sr as a subset of the set of indices {1, . . . ,K}
composed of |Sr| items.

It is immediate to prove that the following remark holds.
Remark 3.1: Matrix M is full rank if and only if no linear

combinations of any sets of rows indexed by a Sr sums to the
zero vector over the field Fq . For q = 2, we can consider the
collection of events

USr
.
=

{∑
i∈Sr

mi = 0

}
, for r ∈ R, (6)

where we write mi for the i-th row of M, and where addition
is understood to be over F2. We know that M is full rank if
and only if none of the events USr occur for any r ∈ R.

Example 3.1: Consider the following matrix when q = 2:

M =


1 0 0 1 1 0 1
0 1 1 0 0 0 0
1 0 1 0 0 1 1
1 0 0 1 1 0 1
1 1 0 0 0 1 1

 .

In this case, rows 1 and 4 are identical, so U{1,4} occurs.
Further, rows 2,3 and 5 sum to zero over F2, so U{2,3,5} also
occurs. In addition, since both these sets of rows sum to zero,
their union must also sum to zero, so U{1,2,3,4,5} also occurs.

Example 3.1 illustrates why it is not sufficiently accurate
to estimate the full-rank probability of M by considering
the expected number of events USr which occur, using the
expression for the probability of each individual US . This
approach ignores the fact that such events are positively
correlated. In general, given disjoint sets S1, . . . ,St such that
US1 , . . . , USt occur, then US will occur for each of the 2t− 1
sets S formed as unions of the Si

Our proposed performance framework builds upon a differ-
ent set of statistical events, defined as follows.

Definition 3.2: Let VSr be defined as follows

VSr
.
= USr

⋂( ⋂
T ⊂Sr

UC
T

)
, for r ∈ R, (7)

which is the event that the rows indexed by Sr sum to the
zero vector in F2 but that no collection of rows indexed by a
proper subset of Sr sums to the zero vector.

In general, from Definition 3.2, we have the following
remark.

Remark 3.2: Matrix M is full rank if and only if none
of the events VSr occurs, for r ∈ R. This choice of events
significantly mitigates the impact of the correlation among
events observed in Example 3.1. There, V{1,4} and V{2,3,5}
both occur (since no subset of them sums to zero), however
V{1,2,3,4,5} does not. This enables us to derive a tighter
approximation of RK,n(p).

The proposed derivation of RK,n(p) involves two approx-
imation steps: (i) We approximate the probability of event
VSr happening for any set Sr consisting of a given number
of items, and (ii) Since results based on the Stein-Chen
method [13], [14] show the sum of approximately independent
zero–one variables with small probability of being one is close
to Poisson, we approximate RK,n(p) with a negative exponen-
tial function. Firstly, we consider the following quantities:

Definition 3.3: For each ` = 1, . . . ,K:
1) For each r ∈ R such that the set Sr has cardinality `,

the event VSr has the same probability π` of happening,
defined as

π`
.
= P [VSr ] , ` = 1, . . .K. (8)

2) We define a further quantity π̃` recursively as follows:

π̃`
.
= ρ` −

`−1∑
s=1

(
`− 1

s

)
ρsπ̃`−s, (9)

where (since taking ` = 1 gives an empty sum) π̃1
.
= ρ1.

Lemma 3.1: Term π` (defined in (8)) can be approximated
as π̃` (defined in (9)).

Proof: See Appendix A.
We observe that an obvious way in which M can fail to have

full rank is that a particular row is identically zero. Indeed,
considering this event gives an upper bound on RK,n(p),
which for certain parameter values can be reasonably tight.
For this reason, we condition out these events as follows:

RK,n(p) = P({M has no zero rows})
· P({M is full rank} | {M has no zero rows}), (10)
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where we can write the first term of (10) directly as (1−pn)K .
From Lemma 3.1, we prove the following result.
Theorem 3.1: We approximate the second term of (10) as

P(M is full rank |M has no zero rows) ' exp(−λ), (11)

where

λ
.
=

K∑
`=2

λ`, for λ`
.
=

(
K

`

)
π̃`

(1− pn)` , (12)

so we approximate RK,n(p) as follows:

RK,n(p) ∼= (1− pn)K exp(−λ). (13)

Proof: See Appendix A.
The most computationally intensive part of calculating (13)

is the derivation of π̃`, which requires O(K2) operations.
However, since the expression of π̃` is independent of K,
it has to be computed only once to approximate RK,n(p).
In addition, for K = 10, 20, 50 and 100, the average time
needed to compute1 π̃1, . . . , π̃K (normalized by K) is equal
to 2.7 · 10−3s, 7.7 · 10−3s, 7.3 · 10−2s and 4.3 · 10−1s,
respectively. It is also key to note that Theorem 3.1 allows us
to decouple the impact that any `×n submatrix of M has on
the approximation of RK,n(p) as in (13), for ` = 2, . . . ,K.
As the following remark explains, this allows us to further
approximate (13) by reducing the number of summation terms
defining λ and hence, reducing the computational complexity
of the approximation (13).

Remark 3.3: Consider the set of all the ` × n submatrices
of M, then λ` approximates the probability that at least one
of these submatrices is not full rank, assuming M has no
zero rows. For this reason, the approximation of RK,n(p)
given in (13) can be further approximated by referring to
those submatrices of M composed by up to m rows, for
m = 2, . . . ,K. As such, with define the m-th approximation
order of (13) as follows:

R
(m)
K,n(p)

.
= (1− pn)K exp

(
−

m∑
`=2

λ`

)
. (14)

Let us consider the following approximation order optimiza-
tion (AOO) problem2:

AOO min
m∈{2,...,K}

m (15)

s.t. e(m) ≤ τ
∨

m ≤ m̂ (16)

where function e(m) is defined as R
(m)
K,n(p)−R

(m+1)
K,n (p). The

solution m∗ to the AOO problem represents the smallest-order
approximation of (13) associated with a target error value τ ∈
[0, 1] or such that m∗ is smaller than m̂, for 2 ≤ m̂ ≤ K.

Remark 3.4: From (12), it follows that term
∑m

`=2 λ` is
a non-decreasing function of m, i.e., relation R

(m)
K,n(p) ≥

R
(m+1)
K,n (p) ≥ R

(K)
K,n(p) holds. As such, for any given K, n

and p, the error function e(m) attains only one maximum, for

1Tests performed by running our benchmark code on one core of an Intel
Xeon CPU E5-2650v4 operated at 2.20GHz.

2For the sake of compactness, with a slight abuse of notation, we say that
R

(m)
K,n(p) is always equal to R

(K)
K,n(p), for any m > K.
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Fig. 1. Contour map of R(m)
K,n as a function of n and m, for q = 2, K = 20

and p = 0.8. The values of m∗ have been derived by referring to τ = 10−4

and m̂ = K.

m ∈ {2, . . . ,K}. For this reason, the AOO problem can be
solved iteratively evaluating R

(m∗)
K,n (p), for m∗ = 2, . . . ,K,

until e(m∗) ≥ e(m∗+1) and e(m∗+1) ≤ τ or m∗ is smaller
than or equal to m̂.

Remark 3.5: From Remark 3.2, M is full rank if and only if
none of the events VSr occurs, for r ∈ R, and q = 2. However,
for non-binary fields, the aforementioned statement captures a
subsets of events when a random matrix is full rank. As such,
we propose to use (13) to approximate RK,n(p), for q > 2.

IV. ANALYTICAL RESULTS

This section compares the approximation we proposed in
Theorem 3.1 against the approximation (3) and (4). Both our
simulator and the implementation of the proposed theoretical
framework are available online [15].

Fig. 1 shows the relationship that exists between the order
m of the approximation as in (14) and the number n of
received coded packets in R

(m)
K,n, for q = 2, a source message

composed by K = 20 packets and p = 0.8. From (14), we
remark that, for a given value of n, R(m)

K,n is a non-increasing
function of m. This is directly related to the fact that small
approximation orders account for submatrices of M composed
of a reduced number of rows. This can be intuitively explained
by considering the extreme case where n is large compared
to K. In this case, the probability of M being full rank can
be approximated by the probability of having a set of K
(non-zero) rows of M where no rows are identical – this
corresponds to the case where m is set equal to 2.

The aforementioned facts are confirmed by Fig. 1. For
instance, for n = 20, the value of R

(m)
K,n drops from 0.72

(m = 2) to 0.21 (m = 14) to remain almost unchanged for
14 ≤ m ≤ 20. In particular, by solving the AOO problem for
τ = 10−4, m̂ = K and n = 20, we obtain an optimal value of
m∗ equal to 18 as per Remark 3.3. We also observe that the
value of m∗ appears to sharply decrease as n increases, which
makes computationally convenient to approximate RK,n with
R

(m∗)
K,n . For instance, Fig. 1 shows that the error function e(m∗)

takes values smaller than or equal to τ = 10−4 for n = 31 and
m∗ = 4 – thus making it pointless to approximate RK,n with
an heuristic order equal to or greater than 5. In the remainder
of this section, to highlight the accuracy of our approximation,
we will refer to a value of τ = 10−10 or m̂ ≤ d3K/4e.

Fig. 2 compares the user delivery probability R(ε) for
K = 10, 20 and 50 and q = 2. We compare the value for
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K MSE for approxim. MSE for approxim. MSE approxim.
as in Theorem 3.1 as in (3) as in (4)

10 0.0002 0.0043 0.0233
20 0.0002 0.0016 0.0113
50 0.0007 0.0011 0.0077

(a) p = 0.7
K MSE for approxim. MSE for approxim. MSE approxim.

as in Theorem 3.1 as in (3) as in (4)
10 4.08 · 10−6 0.0079 0.0035
20 3.67 · 10−5 0.0390 0.0097
50 1.94 · 10−5 0.0046 0.0140

(b) p = 0.9
Fig. 2. Probability R(ε) of recovering a source message of K = {10, 20, 50}
source packets as a function of the number of coded packet transmissions N ,
for q = 2 and ε = 0.1. Tables shows the MSEs between simulation results
and the cases where RK,n is approximated as in (3), (4) and Theorem 3.1.
Legend of both figures is reported in Fig. 2a.

R(ε) implied by (2), substituting the approximations to RK,n

given by (3), (4) and our proposal in (14) to the probability
R(ε) estimated by Monte Carlo simulations. Results are given
as a function of N − K, which represents the transmission
overhead, i.e., the number of coded packets in excess of K
that are transmitted. Assuming that the time needed to transmit
each coded packet is fixed and equal to one time slot, the
goodput of the system can be immediately expressed as the
bit length of the source message divided by the time duration
of N time slots. For concreteness, we considered a value
of packet error probability ε = 0.1, which is the maximum
transport block error probability regarded as acceptable in
a Long Term Evolution-Advanced (LTE-A) system [4]. In
particular, in the case where p = 0.7, Fig. 2a shows that the
maximum gap between our proposed approximation (14) and
simulation results is equal to 3.1 · 10−2, which occurs for
K = 20. Fig. 2b refers to the case when p = 0.9 and shows
that the gap between (14) and simulation results is negligible.

In contrast, both Fig. 2a and 2b show that approximating
RK,n using the state of the art (3) and (4) leads R(ε) to
significantly deviate from the simulation results. For instance,
for p = 0.9, K = 50 and N −K = 7, the absolute deviation
can be up to 0.14 and 0.22, in the case of (3) and (4), respec-
tively. In general, the maximum Mean Squared Error (MSE)
between simulations and our proposed approximation (14) is
experienced for K = 50 and p = 0.7 and it is equal to
7·10−4. That is smaller than the corresponding MSEs between
simulation and approximations (3) and (4), which are equal to
1.1 · 10−3 and 7.7 · 10−3, respectively (between 1.6 and 11
times smaller). In addition, Fig. 2b shows that, for p = 0.9,
our proposal overlaps simulation results while the considered

p = 0.7 p = 0.9

K, p MSE for approxim. MSE for approxim. MSE approxim.
as in Theorem 3.1 as in (3) as in (4)

K = 20, p = 0.7 < 10−4 < 10−4 < 10−4

K = 50, p = 0.7 < 10−4 < 10−4 < 10−4

K = 20, p = 0.9 0.0038 0.0729 0.0042
K = 50, p = 0.9 0.0005 0.0801 0.0005

Fig. 3. Probability R(ε) of recovering a source message of K = {20, 50}
source packets as a function of the number of coded packet transmissions N ,
for p = {0.7, 0.9}, q = 24 and ε = 0.1. Tables shows the MSE between
simulation results and the cases where RK,n is approximated as in (3), (4)
and Theorem 3.1.

alternatives significantly deviate. In this case, the MSE of our
approximation is between 237 times (for K = 50) and 1063
times (K = 20) smaller than in the case of (3) and, between
722 times (K = 50) and 857 times (for K = 10) smaller than
in the case of (4).

Fig. 3 shows that for q = 24, our approximation either
overlaps (for p = 0.7) or marginally diverges from simulation
results (p = 0.9). In the latter case, we observe that the
(absolute gap) never exceeds 0.11 and the maximum MSE
is equal to 3.8 · 10−3. Similar behavior is also exhibited by
the case where RK,n is approximated as in (3) or (4) and
p = 0.7. However, as p increases to 0.9, the approximation
based on (3) significantly deviates from simulation results even
of a quantity larger than 0.51 (K = 20 and N −K = 9).

Generally, from Figs. 2 and 3 we observe that, for binary
fields (with the only exception of K = 50 and p = 0.9), the
approximation based on (3) is tighter than that based on (4).
However, the exact opposite holds as both q and p increase.
Our proposed approximation avoids this issue. In fact, our
solution tightly approximates simulation results, for all the
cases considered. These conclusions are also confirmed by
Fig. 4, which shows the probability R(ε) as a function of p,
for q = {2, 24}, K = {20, 50}.

As an immediate application of a tighter approximation of
the user delivery probability, we can accurately estimate the
average transmission overhead needed for a user to recover a
source message (that is

∑∞
t=K t ·R|N=t

(ε)−K). In particular,
Fig. 5 shows the average transmission overhead as a function
of ε, for K = 20, 50 and 100 and, p = 0.7 and 0.9. Direct
proof of the quality of the proposed approximation is given by
the fact that the deviation between theoretical and simulation
results is negligible across the whole range of parameters –
the maximum gap between theory and simulations is equal to
2 and occurs for K = 100 and p = 0.9.

V. CONCLUSION

This paper presented a novel approximated performance
model for a sparse RLNC implementation. The proposed
model exploits the Stein-Chen method to derive a tight ap-
proximation to the probability of a user recovering a source
message. Analytical results show that the Mean Squared Error
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K = 20, q = 2

K = 20, q = 24

K = 50, q = 2

K = 50, q = 24

Fig. 4. Probability R(ε) of recovering a source message of K = 20 and
50 source packets for N = 25 and 55, respectively, as a function of p with
q = {2, 24} and ε = 0.1.

(MSE) between our approximation and simulation results,
for q = 2 and 24, never exceeds 7 · 10−4 and 3.8 · 10−3,
respectively. On the other hand, the state of the art bounds are
not always tight. For instance, when q = 2 our proposal is
between 1.5 and 1063 times closer in MSE to simulations.

APPENDIX A

Proof of Lemma 3.1: By symmetry it is enough to
consider a subset of rows of the form S = {1, 2, . . . , `}, where
` ≤ K. The key is to fix one row (say row 1) and to consider
the smallest set of rows containing row 1 which sums to zero.
Consider W , a subset of S with 1 ∈ W , and say that event
TW,S occurs when both: (i) the rows of M with indices in S
add to zero and, (ii) rows with indices in W add to zero, but
no subset of these rows add to zero, i.e. event VW occurs see
(7). By considering (i) and (ii) together, TW,S occurs when
the rows in both the sets S \W and W (but no subset of W)
add to zero. In other words TW,S equals US\W

⋂
VW . Since

rows in M are statistically independent, for each W of size
(`− s), the event TW,S occurs with probability

P(TW,S) = P
(
US\W

⋂
VW
)

= P
(
US\W

)
P (VW) = ρsπ`−s. (17)

Furthermore, since US =
⋃
W TW,S for any S we observe:

ρl = P(US) = P

(⋃
W
TW,S

)
'
∑
W

P(TW,S)

=

`−1∑
s=0

(
`− 1

s

)
ρsπ̃`−s =

`−1∑
s=1

(
`− 1

s

)
ρsπ`−s + π`. (18)

This relation holds because (i) we assume events TW,S are
approximately disjoint (ii) there are

(
`−1
s

)
possible sets W of

size (`−s) containing 1. In Example 3.1, if S = {1, 2, 3, 4, 5}
then US occurs as previously discussed, indeed so does TW,S
with W = {1, 4}. This concludes the proof.

Proof of Theorem 3.1: We write R∗ for the collection of
indices r such that |Sr| ≥ 2 and define the random variable

W
.
=
∑
r∈R∗

I(VSr |M has no zero rows) (19)

where indicator function I(·) equals 1 if a particu-
lar event has occurred, or 0 otherwise. Observe that
P(M is full rank | {M has no zero rows}) = P(W = 0).

K = 20

K = 50

K = 100

(a) p = 0.7

K = 20

K = 50
K = 100

(b) p = 0.9

Fig. 5. Average transmission overhead as a function of ε, for
K = {20, 50, 100}, q = 2 and p = {0.7, 0.9}. Legend of both figures
is reported in Fig. 5a.

By (8), if Sr has ` ≥ 2 elements, independence of the rows
means that the probability

P (VSr | {no zero rows in M})

=
P (VSr

⋂{no zero rows in M})
(1− pn)K

=
P (VSr )P ({no zero rows in Scr})

(1− pn)K

∼= π̃`(1− pn)K−`
(1− pn)K =

π̃`
(1− pn)` . (20)

Hence, by counting sets of different sizes in R∗, we it follows
that E[W ] = λ. Further, W is the sum of a large number
of zero–one variables, each of which equals one with small
probability, and where each random variable in the sum is
independent of a large proportion of the other terms. These are
the conditions under which W is close to Poisson, as shown by
the Stein–Chen method [13], [14]. Approximation (13) follows
because [13, Theorem 1] means that P(W = 0) ' exp(−λ).
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