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Starting Point and Goals

® Delivery of multimedia broadcast/multicast services over 4G
networks is a challenging task. This has propelled research into
delivery schemes.

® Multi-rate transmission strategies have been proposed as a
means of delivering layered services to users experiencing
different downlink channel conditions.

® Layered service consists of a basic layer and multiple
enhancement layers.

Goals

® Error control - Ensure that a predetermined fraction of users
achieves a certain service level with at least a given probability

® Resource optimisation - Minimise the total amount of radio
resources needed to deliver a layered service.
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1. System Parameters and Performance Analysis
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System Model

® One-hop wireless communication system composed of one

» : Q
' UE
UE 2 4 U
1 H' . |
~ ¢J Source UE A

UE By Node

® Each PtM layered service is dehvered through C orthogonal
broadcast erasure subchannels

subch. 1
)fﬂmsmneMCS
subch. 2
Capacity of subch. 3
bch. 3
SUuoc | | | | ! | ! ~ (no. of packets)
Bl B2 BS

® Each subchannel delivers streams of (en)coded packets
(according to the RLNC principle).
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Non-Overlapping Layered RNC

®@ X = {aj‘l, RN b K} is a layered source message of K source
packets, classified into L service layers
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Non-Overlapping Layered RNC

®@ X = {ail, RN b K} is a layered source message of K source
packets, classified into L service layers

® Encoding performed over each service layer independently
from the others.

® The source node will linearly combl%e the k; data packets
composing the I-th layer X; = {Z;}. 1 and will generate a

stream of Ny > k; coded packets y = {y] P 1, where
ki | Coefficients of the
iy = Z@ Ti ~ hnearlco::nlc)ilnatlon
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Non-Overlapping Layered RNC

® User u recovers layer | if it will collect k; linearly independent
coded packets. The prob. of this event is

Prob. of receiving r out of ni, coded symbols |

ny w

rn N
Pl(nl,u) = Z ( l’u> pnl’“’_r (1 — p)r h(?“) Prob. of decoding
y,

— r layer |
T—klk PEP JL
ny, w kl—l
1
(e T
= kl 1=0 q

h(r)
® The probability that user u recover the first | service layers is

DNO,l(nl,ua Do 7nL,u) DNO N/ nu H P nz u
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Expanding Window Layered RNC

® We define the 1-th window X; as the set of source packets

belonging to the first | service layers. Namely, X;={x; }K l
where K; = Zl | ki

1=

Exp. Win. 3
< >
Exp. Win. 2
< >
<Exp. Win. 1
.CE]_ 562 e o @ o o (I;K
< > € = >
k1 ko k3

@ The source node (i) linearly combines data packets belonging to
the same window, (ii) repeats this process for all windows, and
(iii) broadcasts each stream of coded packets over one or more

subchannels
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Expanding Window Layered RNC

® The probability Dgyy ; of user u recovering the first | layers
(namely, the I-th window) can be written as

DEW,Z(Nl,uy e 7NL,u) = Prob. of receiving r = {7“1, .. rl} out
—Dgw l(N ) of Nu coded symbols
— | y

Nlu Nllu Nlu

D Z[(N1U> (NM> S (Vi) (1 — erZEJ

r1=0 ri—— =0 r = —Tmin,!

Prob. of decoding
window |

® Sums allow us to consider all the possible combinations of
received coded packets
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2. Multi-Channel Resource Allocation Models and

Heuristic Strategies
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Allocation Patterns

subchannel 1
subchannel 2

subchannel 3
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Allocation Patterns

subchannel 1

subchannel 2

subchannel 3

B4 Bs B-
Separated
coded packets coded packets coded packets = Allocation
from X3 fm'm X3 Pattern
subchannel 1|
subchannel 2 [\
subchannel 3
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Allocation Patterns

subchannel 1

subchannel 2

subchannel 3

B4 Bs B-

Mixed
coded packets coded packets coded packets | Allocation
from x, or X, from x, or X, from x5 or X3/ Pattern

subchannel 1 ////Y/
subchannel 2
subchannel 3
Bl 32 B3
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NO-SA Model = &

B Bs

® Consider the variable A, ; = [ (DNQ,l(nu) > D). It is 1, if u
can recover the first | layers with a probability value
> D, otherwise it is 0.
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NO-SA Model = |
® Consider the variable A, ; = [ (DNO’l(nu) > D). It is 1, it |

can recover the first | layers with a probability value
> D, otherwise it is 0.

No. of packets of layer |

® The RA problem for the NO-SA case is delivered over c
L C ‘
N _ R N\ N\ (l,C)
(NO-SA) mll?mlf?lnC > > (1)
n(l’c) (L c) [=1 c=1

Minimization of
resource footprint
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NO-SA Model =
® Consider the variable A, ; = [ (DNO’l(nu) > D). It is 1, it |

can recover the first | layers with a probability value
> D, otherwise it is 0.

® The RA problem for the NO-SA case is

L C
_ . N\ N\ (l,C)
(NO-SA) mll?mlf?lnC > > (1)
n(l’c) (L c) [=1 c=1
U ' Target fraction of users
subject to Z At > Ut [=1,...,L (2)
u=1

" No. of users
Each service level shall be

achieved by a predetermined
fraction of users

School of Computing LLancaster E<3 -

and Communications University
T IITTITTITIr 12



NO-SA Model =

® Consider the variable A, ; = [ (DNO’l(nu) > D). It is 1, it

can recover the first | layers with a probability value
> D, otherwise it is 0.

® The RA problem for the NO-SA case is

L C
(NO-SA) min > ) > “plbe) (1)
mi,...,MmcC
n(l’c) (L c) [=1 c=1
subject to Z At > Ut [=1,...,L (2)
Dynamic- and B
system-related Me—1 < Mg c=2,...,L (3)
constraints I
0<d n9d<B, ¢=1,...,C 4
Because of the SA - ; - (4
pattern l
nbe) = for [ # ¢ (5)
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NO-SA Heuristic

® The NO-5SA is an hard integer optimisation problem because
of the coupling constraints among variables

® We propose a two-step heuristic strategy

i. MCSs optimisation (1M1, ..., MC)
i1. No. of coded packet per—subchannel optimization
( n(l c) n(L c) )
Step 1 Subchannel MCSs optimization.
. I: c<+ C
® The first step selects the > b niax and
value of M such that packets 3. while ¢ > 1 do
delivered through subch. c are ‘5‘3 repeat
: Me < U
received (at least with a target 6 v v—1
prob.) by U - . users. 72 wntil (Y| > U -t or v < Min
8: c<—c—1
9: end while
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NO-SA Heuristic

@ The second step aims at optimising n(l’c), Ce n{L¢) and can
be summarised as follows

DNO,Q(”“’”, n(2,2)) lA)
DNO’l(n(]-?l)) Z ﬁ \ \ DNO’S(n(lal)’n(272)7n(373)) Z ﬁ

_~
subchannel 1 }V

subchannel 2

1V

subchannel 3

A

B4 By Bs

Step 2 Coded packet allocation for the NO-SA case.
I: for [« 1,...,L do

22 Dk 11 . .| Requires a no. of steps
3 while Dno i (nY, ..., nY) < D do I/
4: nh  pbb 41 <2 i (Bt — k¢ + 1)
5: end while
School of Computing 6: end for Lancaster EEA
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NO-MA Model & B ]

® The NO-SA problem can be easily extended to the MA pattern
by removing the last constraint

L C
NO-SA min n(5:¢) 1
| ) B () Z Z:l Y
U
subject to Z Aul > Ut [=1,...,L (2)
u=1
Me—1 < M c=2,...,L (3)
L
0<>» n"9<B, c=1,...,C (4)
[=1
ne) =0 for [ # ¢ (5)
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NO-MA Model & (

® The NO-SA problem can be easily extended to the MA pattern
by removing the last constraint

(NO-MA) Lo
1 (l,C)
DO i 3 2
n(1,0) . n(Le) [=1 c=1
U
subject to Z Aul > Ut [=1,...,L (2)
u=1
Me_1 < Me c=2,...,L (3)
L
0<>» n"9<B, c=1,...,C (4)
=1
nbe) = or [ # c (5)
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

DNO,l(ﬁ(l)) > D

subchannel 2

subchannel 3

A A A

Bl B2 Bg
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

DNO,l(ﬁ(l)) > D Dnoo(@, 7)) > D

\

subchannel 2

subchannel 3

A A A

By Bs Bg
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

Dno.1 () > D Dyoo(@®,7®) >

\

subchannel 2

subchannel 3 j
— B, B, :

Bs
—(1) —=(2) =(3 a
Dros(@V 7 73 > D
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

Step 2 Coded packet allocation for a the NO-MA case.

1:

9:
10:
11:
12:
13:
14:
. end for LLancaster E<3 -

School of Computing 15

c<+1
ne) « 1foranyl=1,...,Landc=1,...,C
n={nY},, where @V < 1 foranyl=1,...,L

for [« 1,...,L do

while Dxo,i(1) < D and ¢ < C do Requires a no. of steps
) a4 g q o - O Step
)« S¢ 7t forany I =1,...,L < Zt—l Bt
if S 79 =B, then —

c<—c—+1

end if

end while

if Dno(n )<Dandc>C’ then
no solution can be found.

end if
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EW-MA Model & T

® Consider the EW delivery mode
Exp. Win. 3

B, By B-

< >
Exp. Win. 2
< >
<Exp. Win. 1
o o CEK
> € : >
]{71 kQ kg

® We define the indicator variab]

(S

fo g = 1 \/ {DEW,t(Nu) > ﬁ}

t=I

User u will recover the first | service layers (at least) with

probability Dif any of the windows |, 141, ..., L are recovered
(at least) with probability [
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EW-MA Model =

@ The RA problem for the EW-MA case is No. of packets Of

window | delivered

over c
L C
(EW-MA) min oy NGO (1)
N(T;)jﬁ&,c) =1 c=1
U
subject to Z““’l > U [=1,...,L (2)
u=1
Me—1 < Mg C — 27 7L (3)
L
0<» NI <B, ¢=1,....C (4)
[=1

@ It is still an hard integer optimisation problem but the
previously proposed heuristic strategy can be still applied.
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3. H.264/SVC Service Delivery over eMBMS Networks

School of Computing Lancaster EEX

and Communications UIIIVCI‘SIty ‘_A_,:W___/
‘0 NN RN RBR




Layered Video Streams

H.264/SVC video stream formed by multiple video layers:

® the base layer - provides basic reconstruction quality

® multiple enhancement layers - which gradually improve the
quality of the base layer

Considering a H.264/SVC video stream

GoP

® it is a GoP stream

ez @® a GoP has fixed number of

[ [ (S S S [ S N R frames

o] ’ @ it is characterized by a time
JE S S S duration (to be watched)

base @ it has a layered nature
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H.264/SVC and NC

® The decoding process of a H.264 /SVC service is performed on a

GoP-basis
The basic layer 15t enhancement 2"d enhancement
of a GoP | layer of a GoP . layer of a GoP
e o ¢ o o 1 I .CEK
- - > < - >
k 1 /{72 k‘g

® Hence, the k; can be defined as

Bitrate of the video Time duration of a
layer | | GoP
k _ Rl dGoP
L — H
. ' Source/Coded packet
School of Computing hit cize ncaster E=E3
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LTE-A System Model

® PtM communications managed by the eMBMS framework

® We refer to a SC-eMBMS system where a eNB delivers a
H.264/SVC video service a target MG

@ The DL phase of LTE-A adopts the OFDMA and has a framed

nature
| TB = Transport Block
eMBMS-capable subframes radio frame
A rey'sy. / _ _ _ 1B let fo ter services _
% _
3
S E

time

I'B of subchannel 1 T'B of subchannel 2 TB of subchannel 3
School of Computing Lancaster E<3 -
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3. Analytical Results
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Analytical Results

® We compared the proposed strategies with a classic Multi-

rate Transmission e It is a maximization of the

U ~ sum of the user QoS

max PSNR,

_ , maq,...,MJ,
No error control strategies u=1

are allowed (ARQ, RLNC, etc.)

® System performance was evaluated in terms of

~ Resource footprint

(L C
) nb¢) for NO-RNC
- 4
—1 c=1
o= { lLl CC
Y ) NG for EW-RNC
~/ >
p— :]_
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Analytical Results

® We compared the proposed strategies with a classic Multi-

rate Transmission e It is a maximization of the

U ~ sum of the user QoS

max PSNR,

_ , maq,...,MJ,
No error control strategies u=1

are allowed (ARQ, RLNC, etc.)

® System performance was evaluated in terms of

PSNR after recovery of the basic
and the first | enhancement layers

max {PSNRl Dl(\}ug)’l}, for NO-RNC

I=1... L
p(u) = (u)
_max {PSNR; Diy, |, for EW-RNC
—1... )
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Analytical Results

Scenario with a high heterogeneity. 80

UEs equally spaced and placed along the We considered Stream A and B
radial line representing the symmetry which have 3 layers, bitrate of
axis of one sector of the target cell | ~ Ais smaller than that of B

Tlarget MG larget cell
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Analytical Results

Stream A
q=2

Hd
m
T 45
Q
e
~ 39
N
al
g 2 NO-SA
= [ All the proposed ...................................... A
'g 15 R B B A n A n B s a A e nanan e naon. » st Strategies meet .......................................................................................... ]
S the coverage
< ——MrT MrT
= T B constraints b} L3 -
5 H—¥Heu. NO-MA =" B Ut sy [ UUUNTORUTOTOUOI SOV IOSPT STTRO | ................................... 3
H —&— Heu. ]IEW—MA ..... S S B | | ... N l ............. T T
O90 110 130 150 170 190 210 230 250  97¢ 90
Distance (m)
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Analytical Results | s

q=2

55 ls.

M . N\.
3 45 DR | A PSNR ........................................... o ,]\

Q I S layer81+2+3 ........................... - -

o ' PSNR

Z 35 N SN SN . layersl+2 .......................
CDJ-‘) ....................................................................................... | .

8 25 I | R SRR /A R t

= i All the proposed ST

.§ 15 e Strategies meet ............... R

Eé T the coverage

z l +Heru. NO-SA | constraints | "

5 H—%Heu. NO-MA =" S rm— ST | :
Ll _._Heu‘ EW_MA ..... | ................. | ............... | ............ . . | . I ,,,,,,,, | ........................... L .

O90 110 130 150 170 1550 210 230 2950 27( 90
Distance (m)
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Analytical Results s

q:256

£3 tAQ £1
515} | | | | | !
R —&—*—&—*—*—&—&+—¢+—*-¢-=ﬂf$—o+—vr~—&+—o-« , | J
m y |
345 _* ...... ** ...... ** ...... * ** ...... ** ......................................................................................
Q
s XSSO O O S
= 39
N
ol
= 25
- i
% <+ MrT
» 15 H % Heu NOSA |
© | % Heu. NO-MA
2 ® Heu. EW-MA
5 _—StreamA ................................................................
1= = Stream B ‘ ‘ '

Og0 110 130 150 170 190 210 230

Distance (m)

® The NO-MA and EW-MA strategies are equivalent both in
terms of resource footprint and service coverage

® The service coverage of NO-SA still diverges from that of
NO-MA and EW-MA.
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4. Concluding Remarks
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Concluding Remarks

® Definition of a generic system model that can be easily
adapted to practical scenarios

® Derivation of the theoretical framework to assess user QoS

® Definition of efficient resource allocation frameworks, that
can jointly optimise both system parameters and the error
control strategy in use

® Development of efficient heuristic strategies that can derive
good quality solutions in a finite number of steps.
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Concluding Remarks
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Future Extensions

® LTE-A allows multiple contiguous BS to deliver (in a
synchronous fashion) the same services by means of the
same signals

® Users can combine multiple transmissions and do not need
of HO procedures.
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Future Extensions

® We are extending the theoretical framework.

® These are some preliminary results for a grid of users placed

on the SFN.
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System Model

@® We adopted this convention

pu(ma) < pu(mb) if mg < my

PEP experienced by an user u when
the MCS "My is adopted

® Reception of a coded packet is acceptable if Pu (m) < D holds

® Each subchannel delivers streams of (en)coded packets
(according to the RLNC principle).
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Results at a Glance

Minimize the total
amount of radio
resources

, == Heu. EW-MA, Stream A

+ Dir. NO-SA, Stream A

X Dir. NO-MA, Stream A i
== Heu. NO-SA and NO-MA, Stream A

%¥ Dir. EW-MA, Stream A |

® Dir. NO-SA, Stream B

[1 Dir. NO-MA, Stream B |
= === Heu. NO-SA and NO-MA, Stream B
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Finite field size g
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Results at a Glance
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Minimize the total

<+ Dir. NO-SA, Stream A
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Expanding Window Layered RNC

® Owing to the lack of an accurate expression for gz(r), we
approximate it as

x
l K;—17T 1 ]
g(r) =h (D i) = 1|1
i=1 o | gZmm)T
In other words, we say that
The prob. of recovering the I-th The prob. of recovering the l-th

window given window given

T:{Tl,TQ,...,Tl} T:{())O?"’?Zfl[::l,ri}

12
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Expanding Window Layered RNC
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Expanding Window Layered RNC
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Expanding Window Layered RNC

® The probability Dgyy ; of user u recovering the first | layers
(namely, the I-th window) can be written as

DEW,Z(Nl,u, . ,NL,U,) — Prob. of receiving r — {7“1, . rl} out
—Dgw l(N ) of Nu coded symbols
— | .

Nlu Nllu Nlu

D Z[(N1U> (NM> S (Vi) (1 — erZEJ

r1=0 ri—— =0 r = —Tmin,!

Prob. of decoding
window |
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Expanding Window Layered RNC

® The probability Dgyy ; of user u recovering the first | layers
(namely, the I-th window) can be written as

DEW,Z(Nl,u, . ,NL,U,) — Prob. of receiving r — {7“1, . rl} out
—Dgw l(N ) of Nu coded symbols
— | .

Nlu Nllu Nlu

£¥ EET e g

r1=0 ri—— =0 r = —Tmin,!

Prob. of decoding
window |

® "min,l is the minimum value of 77 such that Dgyy (Nu) is not
zero. We can prove that

Kl for] =1
I'min,l =
’ K, — K;_ max (Tmin -1 — 77— tor [ >
[ I—1 + Ima ( min,/—1 ri—1, O) %ancastter-
niversity

42



Expanding Window Layered RNC

® Owing to the lack of an accurate expression for ¢;(r), we
approximate it.

@® We inspected the quality of the considered approximation, for
» p — 0.1and 0.3

» ¢ = 2and 256
;Kl — 5, KQ = 10 and Kg =19
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Expanding Window Layered RNC
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® The maximum performance gap is smaller than 0.017 for q=2.

The gap becomes negligible for larger values of q Lancaster E23
i University ©



NO-SA Heuristic

® The NO-5SA is an hard integer optimisation problem because
of the coupling constraints among variables

@ We propose a two-step heuristic strategy

i. MCSs optimisation ( 171, ...,TMC)
ii. No. of coded packet per-subchannel optimization
(o) . nlle))

Step 1 Subchannel MCSs optimization.
® The first step selects the value I c C

of M such that |/(me)| > [T . £, 20 A (alnd
- while ¢ > 1 do

4 repeat
u(ELﬂW%)ﬁ 5: Me < U

6: v+<v—1
M(u) > M 7 until |/ > U - t. or v < Mumin
8 c<—c—1
9:

end while
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NO-SA Heuristic

@ The second step aims at optimising n(l’c), Ce n{L¢) and can
be summarised as follows

Dyo,2(ntY, n(22) > D
DNO’l(n(]-?l)) Z _D \ \ DNO’S(n(lal)’n(Qﬁ)’n(?’?g)) Z ﬁ

_~
subchannel 1 }V

subchannel 2

subchannel 3

A

B B, Bs
Step 2 Coded packet allocation for the NO-SA case.

I: for [« 1,...,L do

22 Dk 11 . .| Requires a no. of steps

3 while Dno i (nY, ..., nY) < D do I/

4: n — nth 41 <> i (Bt — Kkt + 1)

5: end while

6: end for Lancaster EZE3
University = *
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

DNO,l(ﬁ(l)) > D

subchannel 2

subchannel 3

A A A

B Bs B4
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

Dno1 (@) > D Dyoo(@P,7®) > D

\

subchannel 2

subchannel 3

A AN A

B Bs B4
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

Drno1 (@) > D Dyoo(@), 7)) >

\

subchannel 2

subchannel 3 j
— B, B, :

B

A

DNO,S(ﬁ(l) ’ 7(2) 7 ﬁ(3)) > D
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NO-MA Heuristic

® The NO-MA is still an hard integer optimisation problem. We
adopt the same two-step heuristic strategy.

@ For the first step we resort to the “Step 1" procedure

® The idea behind the second step can be summarised as follows

Step 2 Coded packet allocation for a the NO-MA case.

1:

9:
10:
11:
12:
13:
14:
15:

c<+1
ne) « 1foranyl=1,...,Landc=1,...,C
n={nY},, where @V < 1 foranyl=1,...,L

for [« 1,...,L do
while Dxo,i(1) < D and ¢ < C do Requires a no. of steps
) a4 g q o - Ol p
)« S¢ 7t forany I =1,...,L < Zt—l Bt
if S 79 =B, then —
c<—c+1
end if
end while
if Dno(n )<Dandc>C’ then
no solution can be found.
end if
end for Lancaster EZ3

16 University =



EW-MA Heuristic

® The EW-MA is still an hard integer optimisation problem but
the same two-step heuristic principle still holds

@ The first step follows the “Step 1" procedure

® The second step relies on the same idea we considered for the
NO-MA case

@ The second step requires a no. of steps < 25:1 Bt .
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LTE/LTE-A Stack

3GPP’s LTE is one of the most promising 4G standard for mobile
networks. It promises to practically manage PtM service delivery.

‘L PDCP SDU (i.e., IP packets)

( PDCP )

IP header compression |

. . RLC-SDUs
and ciphering $

[ RLC

R, ' Segmentation/concatenation of
T RLC-SDUs, ARQ processes
[ MAC j

RLC PDUs mapping on
the radio frame, HARQ @MAC—PDUS
[ PHY j

Radio frame transmission

operations
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LTE/LTE-A Radio Resources

It Relies on OFDMA. Resources are organised in a time/ frequency
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LTE/LTE-A Radio Resources

It Relies on OFDMA. Resources are organised in a time/ frequency
structure called radio frame.

1TTI=1ms
R 10 TTIs per radio frame / RB (180 kHz x 0.5 ms)

' RBP (180 kHz x 1 ms)

o
c
Q
S
o
o,  TB consists of one or
more RBPs
time
Lancaster-

Radio frame University *©



LTE-A Radio Resources

PtM communications managed by the eMBMS framework.
Two transmission modes have been defined:

® SC-eMBMS - Service delivered on each cell independently
v Pros: Each eNB can independently optimise the delivered services
v Cons: Neighbouring cells may interfere with each other

® SFN-eMBMS - Service delivered on a group of cells
v Pros: No interfering cells in the SFN

v Cons: Services optimised in a centralised fashion

MCE / MBMS-GW
(l:)

(i)
SN SEN
Mi1/M2 (®)) UeNB

2 °0\
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LTE-A Radio Resources

PtM communications managed by the eMBMS framework.
Two transmission modes have been defined:

® SC-eMBMS - Service delivered on each cell independently
v Pros: Each eNB can independently optimise the delivered services
v Cons: Neighbouring cells may interfere with each other

® SFN-eMBMS - Service delivered on a group of cells
v Pros: No interfering cells in the SFN

v Cons: Services optimised in a centralised fashion

eMBMS subframes
-7 NS S o
N D ~

-

v At most 6 out of 10 TTIs
can convey eMBMS data

frequency

v Fixed allocation pattern

_______
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Peak Signal-to-Noise Ratio

® It is defined on a frame-basis

® It can be defined by means of the Mean Squared Error (MSE)

i,j-th pixel of the

Considering a frame compressed frame
of m x n pixels m @ n

1 2
MSE = — "3 (1iy — Kiy)

i=1 j=1

i,j-th pixel of the
original frame

® Hence, the PSNR can be defined as follows
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Recovery probability
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Analytical Results
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Stream B

Analytical Results
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® We are extending the theoretical framework.

® These are some preliminary results for a grid of users placed
on the SFN.
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® We are extending the theoretical framework.

® These are some preliminary results for a grid of users placed

on the SFN.
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® These are some preliminary results for a grid of users placed
on the SFN.

J 4 video layers

)

Each colour
represents the 600
number of
recovered

video layers \ 400

MrT

200

-200

-600 -400 -200 0 200 400 600 800 agncasterE=a

Jniversity



® We are extending the theoretical framework.

® These are some preliminary results for a grid of users placed

on the SFN. J
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