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mmWave Comms for Next Generation ITSs

The IEEE 802.11p/DSRC can achieve at most ~2/ Mbps, in practice it is
hard to observe that.

However, DSRC standards are suitable for low-rate data services (for e.q.,
positioning beacon, emergency stop messages, etc.).

On the other hand, future CAVs will require solutions ensuring gigabit-per-
second communication links to achieve proper 'look-ahed’ services
(involving cameras, LIDARS, etc.), etc.

't is reasonable to design hybrid networks integrating both mmWave ano
DSRC technologies
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mmWave Comms for Next Generation ITSs

D IEEE 802.11p/DSRC Coverage (Base Layers) D LTE-A Coverage (1St Enhancement Layers) D mmWave Coverage (2nd Enhancement Layers)

LTE-A Base Station - mmWave —
. 1®” Base Station Notification of a road

Traffic light status ® T - side alert and LIDAR
notification . 3D scans are acquired

Notification of
emergency braking
because of a pedestrian
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Practical Highway Scenario
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System Model (Road Layout)

high speed lane 1 —>

high speed lane 2

Straight and homogeneous road section
Vehicles are required to drive on the left hand side of the roac
We characterize the performance of a standard user placed at the origin of

th e aXls. Andrea Tassi - a.tassi@bristol.ac.uk



System Model (BS Distribution)

high speed lane 1

high speed lane 2

x-comp. of BS positions follow a 1D PPP of density Apg
A BS is placed on a side of the road (upper/bottom side) with probability
¢ = 0.5. Hence, BSs on a side of the road define a 1D PPP of density gABs
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System Model (Blockage Distribution)
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Obstacles on each obstacle lane follow a 1D PPP of density A, ¢

Obstacle processes are independent but the blockage density of lane £ on
each traffic direction is the same
Fach blockage is associated with a footprint of length T Andres Tacsi - o tassi@brictolac.uk



PL Model and User Association

We approximate Pr, with the probability that no blockages are present
within a distance of T/2 on either side of the ray connecting the user to a
BS. Hence, our approximation is independent on the distance of BSito O

The PL function associated with BS i is
5(7"2) — 1i7LCL7°i_aL + (1 — 1i7L)CN7°,L-_aN

The standard user always connects to the BS with the minimum PL
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PL Model and User Association

We approximate Pr, with the probability that no blockages are present
within a distance of T/2 on either side of the ray connecting the user to a
BS. Hence, our approximation is independent on the distance of BSito O
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The PL function associated with BS i is
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The standard user always connects to the BS with the minimum PL
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System Model (Beam Steering)

@ NLOS BS & ™ LOS and serving BS @
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The main lobe of each BS is always entirely directed towards the road
The user/BS beam alignment is assumed error-free
The beam on an interfering BS is steered uniformly within 0° and 180°
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The Probability Framework

Assume the user connects to BS 1, we define the SINR as
1 A1 £(T1 Caad
SINRp = Eb N g( ) gaLns
o+ ) _oh; A;L(r;
normalized thermal #5) 77
noise power

,k*h}

EXP(1)
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The Probability Framework

Assume the user connects to BS 1, we define the SINR as
1 A1 £(T1 Caad
SINRo = =T — gains
o+ ) _oh; A;L(r;
normalized thermal #5) 777
noise power

,k~~

EXP(1)

We characterize the following SINR outage

PT(Q) PCL(Q)
e |
?ISINRp < 6| = P, — P|SINRp > 6 and std. user served in LOS]

+ Px — P[SINRp > 6 and std. user served in NLOS
-—_
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Probability of Being Served in LOS/NLOS
The standard user connects to a NLOS BS with probability
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Probability of Being Served in LOS/NLOS
The standard user connects to a NLOS BS with probability

w(Ny+1)

|
AL (7“)
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Probability of Being Served in LOS/NLOS
The standard user connects to a NLOS BS with probability

O
PN = / fn(r)e _QAL\/A (T) Nt dy
w(Ny+1) L T

where

AL (T‘) — I11aX ’LU(NO -+ ;

While, Py = 1 — Py
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Coverage Probability Terms

PT(Q) PCL(Q)
P e —— D ————
?ISINRp < 6| = P, — P|SINRp > 6 and std. user served in LOS]

Pn — P|SINRp > 6 and std. user served in NLOS]
#
Pon (0)
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Coverage Probability Terms

PT(Q) p PCL(Q)
?ISINRp < 6| = P, — P|SINRp > 6 and std. user served in LOS]

Pn — P|SINRp > 6 and std. user served in NLOS]
#
Pon (0)
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Coverage Probability Terms

PT(Q) p PCL(Q)
— s —
?ISINRp < 6| = P, — P|ISINRp > 6 and std. user served in LOS]

M ?ISINRp > 0 and std. user served in NLOS]
e e EEE—
Pon(0)
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Coverage Probability Terms
T (P (0))

SINRp > 6 and std. user served in LOS]

P[SINRo < 6] = Py, -]
vl ?ISINRp > 60 and std. user served in NLOS
e e EEE—
Pon ()
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Coverage Probability Terms
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Coverage Probability Terms,

P (6) _ PéL(6)
?ISINRp < 6| = P, — P|ISINRp > 6 and std. user served in LOS]

Y — P[SINRo > 6 and std. user served in NLOS|

PCX (6)
As (vN increases, in order to be convenient, a NLOS BS has to be quite

close to O. Up to a point where Py, is (almost) 1. It so,

| /+OO 5, T?LE ( Ory ) fu(ry) dr
— e ~1-L I.L L\T1 |
w(Not1) A, C

1

Pr(0)
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Coverage Probability Terms,

P (6) _ PéL(6)
?ISINRp < 6| = P, — P|ISINRp > 6 and std. user served in LOS]

Y — P[SINRo > 6 and std. user served in NLOS|

PCX (6)
As (vN increases, in order to be convenient, a NLOS BS has to be quite

close to O. Up to a point where Py, is (almost) 1. It so,

| /+OO 5, T?LE ( Ory ) fu(ry) dr
— e ~1-L I.L L\T1 |
w(Not1) A, C

1

Pr(0)

The rate coverage follows from the Fubini’s theorem (tor a bandwidth W)

Rc(li) — 1 — PT(Q'{/W — 1)
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A Fundamental Result

We proved that the Laplace transform ot the interference component
generated by the BSs on the upper/bottom side of the road (S=U, S = B)

that are in LOS/NLOS with the user ( ) can be approximated as
'CIS,E,@l (5) = H \/['Is B, (S;CL, b, A)
Sq E{U B}

(a,b,A)€C|X1 1,51,E1,S,E

Conditioned of being served in LOS/NLOS (E; =L, E; = N).

Where the fundamental Laplace transform term is...
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A Fundamental Result
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A Fundamental Result

4 —(sAbT*E41) 1

dt=—(sAa " *E+1)—1
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Parametrization of L:IS,E,‘El

For simplicity, we assume that the [X antenna gain is always equal to the

minimum value.

However, we characterize the RX antenna gain.
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Parametrization of LIS,E,%

For simplicity, we assume that the [X antenna gain is always equal to the
minimum value.

However, we characterize the RX antenna gain.

iy No obther LOS
~ BSs can be
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For simplicity, we assume that the [X antenna gain is always equal to the

Parametrization of L:Is =

minimum value.

However, we characterize the RX antenna gain.
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Parametrization of £IS 5.y
(a,6,8) € Clx |5, S.E ,

For any [21] (il K o). Finally, we can say
y TOO, gTXJRX )>
such that J > 0 (\961\, ‘|‘0079TX9RX)

24 (371 ,K,QTXGRX),
For any |1 K, 400, gTX9RX ), < ( ) ) < ( )
such that J < 0 (lz1], |J|, 91xGRX)> LI7 1 S) = LIS,E) 1 S
(|/]; +00, gTx9RX)
(N (1), J, 97X gRX ), SE{U,B},EE{L,N}
For any |x1| (TN (r1), +00, gTXIRX)>
such that J > 0 (J, K, ngGRx),
(K, +0, gTX9grX) 1T K., = .
< +o0, gTx o> Fore.qg., it E;=LandJ >0, it follows
For any |x1| <UL UL>(J<0)
such that J <0 and replace |x1| ~
with zn (1) L:I T (S) — L:I T (S’ L1 ‘ K QTXGRX)
(J1], +50, gTx gRx) 1 S, B =L AT S
<U,L,B,L > For any |x1| ( ’ ’ ’
$1|7—|'0079TXQRX)7 £ J
Refer to the case < U, L, B,L > and . n (S' T (T ) )
<ULB,N> replace |x1| with zn(71) IS;E? <1 ) N 1 ? ? 'nggRX
Refer to the case
For any |z1| . ] ( o l-( )
<U,N,U,L> |such that oy (r1) > K rer’L’B’I.‘>and £IsjE, PRCE Ja 79TXGRX
place |x1| with xg (1)
For any |z1| Refer to the case )
< U,L,U,L > and . ] ( - K NC )
such that mL(T’l) S K replace \21;1| with ZUL(T'l) (£IS,E7 4"1 S’ 9 —I_ 9 nggRX )
< U,N,U,N > Refer to the case < U,L, U, L > 3
Refer to the case < U, L, B, L > and
N,B,L v _ i :
<UNBL> replace x1 with x1,(71) (L:IS,E?tl (87 'CE]-‘7 —I_OO7gTXgRX))

< U,N,B,N > Refer to the case < U,L,B,L >
Cases where Refer to the correspondent cases
S1 = B,S=B where S = Uand S=U (

3
'CIS B, (S;xN(T1)7 OO?QTXQRX))
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LOS vs. NLOS
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SINR Outage
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SINR Outage
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SINR Outage
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SINR Outage
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SINR Outage
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Rate Coverage
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Rate Coverage
1

|- Grx = 10dB, Simulation
| ——Grx = 10dB, Theory
Grx = 20dB, Simulation
Grx = 20dB, Theory

| | | | ]
100 200 300 400 500 600 300 900
k (Mbps)

Dr A. Tassi - a.tassi@bristol.ac.uk



#
%

-

»o.

A

-
-

-

-~

T
»~
}

LLLL A4
-

P L L L L L Ll
-
-

)

Frgsc,

PR
) -.f l‘,

4

_. ,&&ﬁ ..mf

.




What Have we seen?

The probability of being served by a NLOS BS cannot be considered
negligible.

By reducing the antenna beamwidth form 30° to Y0° does not necessarily

have a disruptive impact on the the SINR outage probability, and hence, on
the rate coverage probability.

Ditferently to what happens in bi-dimensional mmWave cellular networks,
the BSs density does not largely aftect the network performance.

Overall, tor a tixed SINR threshold, the SINR outage probability tends to be
minimized by density values associated to sparse network deployments.
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