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Starting Point  and Goals
๏ Point-to-Multipoint communications play a pivotal role in 4G/

5G networks. We champion RLNC. 

๏ A fundamental problem: the computational complexity of the 
RLNC decoder. The higher the number of decoding operations 
is, the more the user's computational overhead grows and, 
consequently, the faster the batteries of mobile devices drain. 

๏ Layered service consists of a basic layer and multiple 
enhancement layers.

Goals 
๏ Efficient way to characterize the performance of users targeted by 

ultra-reliable layered multicast services 

๏ Convex RA framework for minimizing the complexity of the RLNC 
decoder by jointly optimizing the transmission parameters and the 
sparsity of the code.
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1. System Model and RNC Background



System Model
๏ One-hop wireless communication system composed of one 

source node and U users
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๏ Each PtM layered service is delivered through C orthogonal 
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๏ Each subchannel delivers streams of (en)coded packets 
(according to a RLNC scheme).
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๏ Encoding performed over each service layer independently 
from the others. 

๏ The source node will linearly combine the    data packets 
composing the l-th layer                        and will generate a 
stream of coded packets, where

๏                             is a layered source message of K source 
packets, classified into L service layers
x = {x1, . . . , xK}

RNC in a Nutshell

kl

Coef:icients	of	the	
linear	combination	
are	selected	over	a	
:inite	:ield	of	size	q

{xi}K`
i=K`�1+1

yj =
KX̀

i=K`�1+1

cj,i · xi
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Fig. 1. Layered source message, in the case of L = 3.

the scope of the paper to provide analytical and optimization
frameworks dealing with the compression strategy used to
generate a scalable service. For these reasons, the proposed
analysis has been made independent of the way service layers
are generated and the nature of the adopted service scalability.

As suggested in [12], [18], we model the transmitted service
as a stream of information messages of the same size. The
scalable nature of the service is reflected on each message.
In particular, each message consists of L layers, where layer
ℓ is a sequence of bℓ bits. We remark that coded packets
associated with different message layers are transmitted by
different subchannels. Therefore, the total number of occupied
subchannels is L. In the rest of the paper, we will provide an
analytical framework suitable for optimizing the transmission
of each message and, hence, of the whole layered service.

Each layered message x = {x1, . . . , xK} consists of K
source packets, as shown in Fig. 1 for a 3-layer message.
In particular, layer ℓ of x is defined by a fixed number kℓ
of source packets, implying that K =

∑L
ℓ=1 kℓ. If the MCS

adopted by the subchannel delivering coded packets of service
layer ℓ is mℓ, the number of bits carried by each resource block
will be equal to r(mℓ). Hence, we define kℓ = ⌈bℓ/r(mℓ)⌉.
Without loss of generality we assume that the first source
packets of x belong to the base layer (ℓ = 1), and are
progressively followed by packets defining the enhancement
layers (ℓ = 2, . . . , L).

In the remaining part of the paper, we will characterize the
performance of different network coding strategies. It will also
become clear how the selection of MCS scheme and sparsity
associated with each message layer can be jointly optimized.

A. Random Linear Network Coding Background

Let Kℓ =
∑ℓ

t=1 kt be the number of source packets
forming the first ℓ layers of a source message. In the classic
implementation of RLNC, the source node linearly combines
source packets {xi}

Kℓ

i=Kℓ−1+1 forming message layer ℓ, in

order to generate a stream {yj}
nℓ

j=1 of nℓ coded packets,

where yj =
∑Kℓ

i=Kℓ−1+1 cj,i · xi. Each coding coefficient cj,i
is uniformly selected at random over a finite field GF(q)
of size q. The coding coefficients associated with yj define
the coding vector cj = (cj,Kℓ−1+1, . . . , cj,Kℓ

). Since each
coding coefficient is obtained by the same Pseudo-Random
Number Generator (PRNG), modern NC implementations are
keen on representing cj by the PRNG seed used to compute
the first coding vector component cj,Kℓ−1+1. The seed is
transmitted along with the correspondent coded packet. Since
each user is equipped by the same PRNG, it can incrementally
recompute all the coding vector components, starting from
the first one [11], [18]. The RLNC encoding process is then
repeated for each message layer ℓ = 1, . . . , L. A multicast

user can recover the source message layer ℓ, if it successfully
receives kℓ linearly independent coded packets associated with
that message layer.

Unlike classic RLNC, a coded packet stream obtained by
SRLNC associated with layer ℓ generates kℓ systematic packets

and one or more coded packets. The systematic packets are
identical to the source packets {xi}

Kℓ

i=Kℓ−1+1, while the coded
packets are obtained as in the classic RLNC case. For the sake
of the analysis, we define the coding vector associated with
systematic packet i as a vector where: (i) the i-th component
is equal to 1, and (ii) all the remaining components are equal
to 0. For clarity, we will refer to a coding vector related to a
systematic packet as degenerate coding vector in the rest of the
paper. In our system model, we assume that users acknowledge
to the source node, over a fully reliable channel, the successful
recovery of a layer. Furthermore, the source node transmits a
message layer until a predetermined fraction of multicast users
has recovered it. Obviously, as will become clear in Section III,
the transmission of each layer shall meet a temporal constraint.

The sparse versions of both the classic (S-RLNC) and
systematic implementation of RLNC (S-SRLNC) are obtained
as follows. Each component cj,i of a non-degenerate coding
vector associated with source message layer ℓ is independently
and identically distributed as follows [25]:

Pr (cj,i = v) =

⎧

⎨

⎩

pℓ if v = 0
1− pℓ
q − 1

if v ∈ GF(q) \ {0}
(1)

where pℓ, for 0 < pℓ < 1, is the probability of having cj,i = 0.
The event cj,i ̸= 0 occurs with probability 1− pℓ. We remark
that the average number of source packets involved in the
generation of a non-degenerate coded packet, i.e., the sparsity

of the code, can be controlled by tuning the value of pℓ, for
any ℓ = 1, . . . , L.

Since coding vectors are generated at random, there is the
possibility of generating coding vectors where each coding
coefficient is equal to 0. From a system implementation
perspective, all-zero coded packets should be discarded and
not transmitted. On the other hand, in the literature dealing
with the performance characterization of RLNC, it is common
to include the transmission of all-zero coded packets [32],
[33]. In that way, the performance modeling is tractable and
keeps a higher degree of generality. The same principle is
followed in this section and in the following one. However,
Section IV-A will show how the proposed analytical modeling
can be applied to a practical communication system where all-
zeros coded packets are not transmitted.

In order to establish a link between the coding schemes
presented in [12] and those discussed in this paper, the fol-
lowing sections will deal with the Non-Overlapping Window
(NOW-RLNC) and the systematic NOW-RLNC strategies. We
observe that the exact performance model of the Expanding
Window RLNC (EW-RLNC) strategy is unknown, even for
the non-sparse case. In fact, [12] proposes an upper-bound to
the probability of recovering a source message, when the EW-
RLNC is used. Since the reasoning behind that bound relies
on a well-known result of classic non-sparse RLNC [34], its
extension to the sparse case is not trivial. For these reasons, the



RNC in a Nutshell
๏ Let us refer to the user u and layer l. As user u successfully 

receives a coded packet, the corresponding coding vector is 
extracted and added, as a new row, into matrix       . 

๏ Assume u already received                                 coded packets
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RNC in a Nutshell
๏ When     has rank equal to     , the user can keep only the 

linearly independent rows and invert the matrix.
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Cu n` � k`

Encoding Decoding

Cu · xT
` = y

T () C

�1
u · yT

` = x

T
`

๏ Given [1, 0] and [0, 1], is [2, 2] linearly independent? 
✴ No, because 2[1, 0] + 2[0, 1] - [2, 2] = [0, 0] 

๏ Given two lin. indep. vectors (a and b) in GF(q), how many 
vectors form span({a,b})? 
✴ q2. For a = [1, 0], b = [0, 1] and q = 2, span({a,b}) = {[0, 0],  

[0, 1], [1, 0], [1, 1]]} 

๏ Let us encode over a set of 5 inf. elements, if I collected 3 lin. 
indep. coding vectors, what is the prob. of collecting a new lin. 
dep. coding vec.? 
✴ q3 / q5



2. Performance Analysis via Markov Chains



The Coding Matrix
๏ Matrix     is a random matrix over GF(q), where elements are 

independently and uniformly selected by the following prob. law
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Cu

๏ If                  , all the GF(q) elements are equiprobable and things 
are nice and easy… otherwise, things get tricky! 

๏ Since 1997, only 2 conference papers and 2 (+1 on Arxiv) journal 
papers deal with sparse random matrices.
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the scope of the paper to provide analytical and optimization
frameworks dealing with the compression strategy used to
generate a scalable service. For these reasons, the proposed
analysis has been made independent of the way service layers
are generated and the nature of the adopted service scalability.

As suggested in [12], [18], we model the transmitted service
as a stream of information messages of the same size. The
scalable nature of the service is reflected on each message.
In particular, each message consists of L layers, where layer
ℓ is a sequence of bℓ bits. We remark that coded packets
associated with different message layers are transmitted by
different subchannels. Therefore, the total number of occupied
subchannels is L. In the rest of the paper, we will provide an
analytical framework suitable for optimizing the transmission
of each message and, hence, of the whole layered service.

Each layered message x = {x1, . . . , xK} consists of K
source packets, as shown in Fig. 1 for a 3-layer message.
In particular, layer ℓ of x is defined by a fixed number kℓ
of source packets, implying that K =

∑L
ℓ=1 kℓ. If the MCS

adopted by the subchannel delivering coded packets of service
layer ℓ is mℓ, the number of bits carried by each resource block
will be equal to r(mℓ). Hence, we define kℓ = ⌈bℓ/r(mℓ)⌉.
Without loss of generality we assume that the first source
packets of x belong to the base layer (ℓ = 1), and are
progressively followed by packets defining the enhancement
layers (ℓ = 2, . . . , L).

In the remaining part of the paper, we will characterize the
performance of different network coding strategies. It will also
become clear how the selection of MCS scheme and sparsity
associated with each message layer can be jointly optimized.

A. Random Linear Network Coding Background

Let Kℓ =
∑ℓ

t=1 kt be the number of source packets
forming the first ℓ layers of a source message. In the classic
implementation of RLNC, the source node linearly combines
source packets {xi}

Kℓ

i=Kℓ−1+1 forming message layer ℓ, in

order to generate a stream {yj}
nℓ

j=1 of nℓ coded packets,

where yj =
∑Kℓ

i=Kℓ−1+1 cj,i · xi. Each coding coefficient cj,i
is uniformly selected at random over a finite field GF(q)
of size q. The coding coefficients associated with yj define
the coding vector cj = (cj,Kℓ−1+1, . . . , cj,Kℓ

). Since each
coding coefficient is obtained by the same Pseudo-Random
Number Generator (PRNG), modern NC implementations are
keen on representing cj by the PRNG seed used to compute
the first coding vector component cj,Kℓ−1+1. The seed is
transmitted along with the correspondent coded packet. Since
each user is equipped by the same PRNG, it can incrementally
recompute all the coding vector components, starting from
the first one [11], [18]. The RLNC encoding process is then
repeated for each message layer ℓ = 1, . . . , L. A multicast

user can recover the source message layer ℓ, if it successfully
receives kℓ linearly independent coded packets associated with
that message layer.

Unlike classic RLNC, a coded packet stream obtained by
SRLNC associated with layer ℓ generates kℓ systematic packets

and one or more coded packets. The systematic packets are
identical to the source packets {xi}

Kℓ

i=Kℓ−1+1, while the coded
packets are obtained as in the classic RLNC case. For the sake
of the analysis, we define the coding vector associated with
systematic packet i as a vector where: (i) the i-th component
is equal to 1, and (ii) all the remaining components are equal
to 0. For clarity, we will refer to a coding vector related to a
systematic packet as degenerate coding vector in the rest of the
paper. In our system model, we assume that users acknowledge
to the source node, over a fully reliable channel, the successful
recovery of a layer. Furthermore, the source node transmits a
message layer until a predetermined fraction of multicast users
has recovered it. Obviously, as will become clear in Section III,
the transmission of each layer shall meet a temporal constraint.

The sparse versions of both the classic (S-RLNC) and
systematic implementation of RLNC (S-SRLNC) are obtained
as follows. Each component cj,i of a non-degenerate coding
vector associated with source message layer ℓ is independently
and identically distributed as follows [25]:

Pr (cj,i = v) =

⎧

⎨

⎩

pℓ if v = 0
1− pℓ
q − 1

if v ∈ GF(q) \ {0}
(1)

where pℓ, for 0 < pℓ < 1, is the probability of having cj,i = 0.
The event cj,i ̸= 0 occurs with probability 1− pℓ. We remark
that the average number of source packets involved in the
generation of a non-degenerate coded packet, i.e., the sparsity

of the code, can be controlled by tuning the value of pℓ, for
any ℓ = 1, . . . , L.

Since coding vectors are generated at random, there is the
possibility of generating coding vectors where each coding
coefficient is equal to 0. From a system implementation
perspective, all-zero coded packets should be discarded and
not transmitted. On the other hand, in the literature dealing
with the performance characterization of RLNC, it is common
to include the transmission of all-zero coded packets [32],
[33]. In that way, the performance modeling is tractable and
keeps a higher degree of generality. The same principle is
followed in this section and in the following one. However,
Section IV-A will show how the proposed analytical modeling
can be applied to a practical communication system where all-
zeros coded packets are not transmitted.

In order to establish a link between the coding schemes
presented in [12] and those discussed in this paper, the fol-
lowing sections will deal with the Non-Overlapping Window
(NOW-RLNC) and the systematic NOW-RLNC strategies. We
observe that the exact performance model of the Expanding
Window RLNC (EW-RLNC) strategy is unknown, even for
the non-sparse case. In fact, [12] proposes an upper-bound to
the probability of recovering a source message, when the EW-
RLNC is used. Since the reasoning behind that bound relies
on a well-known result of classic non-sparse RLNC [34], its
extension to the sparse case is not trivial. For these reasons, the

p` = 1/q



Should I  Stay or Should I  Go?

๏ Some actual performance value obtained by implementing a sparse 
RNC decoder in a Raspberry Pi Model B. 

๏ If you can afford to wait, than sparsity is your best fit!
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as transient states [35]. The state transition diagram of the
resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the
(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing
the AMC of user u and associated with layer ℓ has the
following structure in its canonical form [35]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the
AMC process as long as it involves only transient states. The
term R(u,ℓ) is a column vector of kℓ elements which lists all
the probabilities of moving from a transient to the absorbing
state. From [35, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =
∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1
. (6)

Element N(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s(u,ℓ)i to state s(u,ℓ)j , where

both s(u,ℓ)i and s(u,ℓ)j are transient states. In particular, from
Lemma 2.2, the following theorem holds

Theorem 2.1 ([35, Theorem 3.3.5]): If the AMC is in the

transient state s(u,ℓ)i , the average number of coded packet

transmissions needed to get to state s(u,ℓ)0 is

τ (u,ℓ)i =

⎧

⎪

⎨

⎪

⎩

0 if i = 0
i
∑

j=1

N(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.
Corollary 2.1: In the case of S-RLNC, the average number

τ (u,ℓ)S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ (u,ℓ)S-RLNC = τ (u,ℓ)kℓ
.

Proof: When the source node transmits the very first

coded packet, user u is in state s(u,ℓ)kℓ
. That follows from the

fact that the source node has not previously transmitted any
coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at
the end of the systematic phase, user u may have collected
one or more source packets, implying that def(Cu) may be
smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s(u,ℓ)0 , . . . , s(u,ℓ)kℓ−1.
Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ (u,ℓ)S-SRLNC of systematic and coded
packet transmissions needed to recover layer ℓ is

τ (u,ℓ)S-SRLNC =
kℓ
∑

i=0

π(u,ℓ)
i

(

kℓ − i+ τ (u,ℓ)i

)

(8)

where π(u,ℓ)
i is the probability that the process associated with

user u starts from state s(u,ℓ)i , given by

π(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]kℓ−i , i = 0, . . . , kℓ. (9)
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Fig. 3. Average number of coded packet transmissions and decoding opera-
tions, for q = 2. With regards the S-SRLNC scheme, the average number of
decoding operations have been obtained by considering pu = 0.1.

Proof: Assume that u collects kℓ− i out of kℓ systematic
packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s(u,ℓ)i .
In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ (u,ℓ)i packet transmissions, namely,

kℓ − i systematic packets plus τ (u,ℓ)i coded packets. At the
end of the systematic packet transmission phase, the AMC

is in state s(u,ℓ)i with probability
(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ (u,ℓ)S-SRLNC is obtained by

simply averaging kℓ−i+τ (u,ℓ)i with the appropriate probability

value of π(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
consider the reduction of the number of source packets, and the
increase of the sparsity of the non-degenerate coding vectors
per source message layer. As discussed in Section II, we
remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one
resource block or, equivalently, forming a coded packet, is
likely to increase. Given that coded and source packets have
the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the
reception of subchannel ℓ is likely to increase, i.e., the fraction
of multicast users regarding the reception of subchannel ℓ as
acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the
probability pℓ of selecting a coding coefficient equal to zero
determine the average number of coded packet transmissions
and the average number of decoding operations needed to
recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ (u,ℓ)S−RLNC and τ (u,ℓ)S−SRLNC as a function of pℓ,
for q = 2, kℓ = {10, 70} and a packet error probability
pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves
have been obtained by computer simulations. More details
about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded
packets are transmitted after the systematic packets. Obviously,
if pu = 0, there is no need of transmitting coded packets as all
the systematic packets are successfully received. That explains

the reason way τ (u,ℓ)S−SRLNC is always equal to kℓ, for pu = 0.



Markovian Model
๏ Our chain models the process (seen from the perspective of the 

receiver) of building a full-rank coding matrix
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Cu

๏ The chain is in state           if     linearly independent coded packets 
are still missing.  

๏ That is an Absorbing Markov Chain (AMC)!
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sparse implementation of EW-RLNC is still an open research
issue.

B. Markovian Modelling for Delay Performance

In this paper, user performance will be expressed in terms of
the average number of coded packet transmissions after which
a user u achieves a predetermined QoS level. For this reason,
in the remainder of the section, we focus on user u and model
the recovery of message layer ℓ as a Markovian process. In
particular, the user decoding process is modeled via an AMC.

Let Cu be a matrix associated with the user u consisting
of kℓ columns and variable number of rows. As user u
successfully receives a coded packet associated with layer ℓ,
the corresponding coding vector is extracted and added, as a
new row, into matrix Cu. Assume u already received nℓ ≥ kℓ
coded packets, i.e., Cu is a nℓ × kℓ matrix. User u recovers
layer ℓ when the rank of Cu, denoted by rank(Cu), is equal
to kℓ or equivalently when the defect of the matrix, defined
as def(Cu) = kℓ − rank(Cu), is zero. For these reasons, we
define a state of the user AMC as follows.

Definition 2.1: The AMC associated with user u and mes-

sage layer ℓ is in state s(u,ℓ)i , if def(Cu) = i, for i = 0, . . . , kℓ.
At first, when user u has not received any coded packet or

coded packets associated with zero-coding vectors, the defect

of Cu is kℓ, and hence, the AMC is in state s(u,ℓ)kℓ
. The

defect progressively decreases, i.e., the index of the AMC
state decreases, as new linearly independent coded packets are
received. As a consequence, in the case of layer ℓ, we have
that the AMC consists of kℓ + 1 states. Furthermore, in order
to define the probability transition matrix of the user AMC, we
summarize here the proof of the following lemma, presented
in [26, Theorem 6.3].

Lemma 2.1 ([26, Theorem 6.3]): Assume that matrix Cu

consists of (t + 1) × kℓ elements, for 0 < t ≤ (kℓ − 1),
and assume that t out of t+ 1 rows are linearly independent.
The probability Pℓ,t that matrix Cu is not full-rank admits the
following upper-bound:

Pℓ,t ≤

[

max

(

pℓ,
1− pℓ
q − 1

)]kℓ−t

. (2)

Proof: Without loss of generality, assume that the first t
rows of Cu, denoted by Cu,1, . . . ,Cu,t, are linearly indepen-
dent. By resorting to basic row-wise operations, it is possible
to transform Cu such that the first t rows and columns of Cu

define the t× t identity matrix. Consequently, the first t rows
of the transformed Cu generate the same vector space defined
by Cu,1, . . . ,Cu,t. The probability that Cu is not full-rank
entirely depends on the last kℓ − t components of the last
row Cu,t+1 of Cu. Hence, the probability that Cu,t+1 does
not belong to the vector space defined by Cu,1, . . . ,Cu,t is at

least 1−max
(

pℓ,
1−pℓ

q−1

)kℓ−t

. That completes the proof.

Because of (1), the exact QoS characterization is a chal-
lenging task [25]. In particular, to the best of our knowledge,
the exact expression of Pℓ,t is not known. In the rest of the
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paper, owing to the lack of the exact expression of Pℓ,t, we
use (2) to approximate Pℓ,t, that is

Pℓ,t
∼=

[

max

(

pℓ,
1− pℓ
q − 1

)]kℓ−t

. (3)

The following remark is immediate from (2) and (3).

Remark 2.1: If pℓ = q−1, each non-degenerate coding vector
is equiprobable, for a given value of kℓ. Hence, a coding
vector belongs to the vector space generated by t linearly
independent coding vectors with probability Pℓ,t = qt/qkℓ .
This result has been discussed in the literature [34] but is
clearly not applicable to the sparse case, in contrast to (3).
It is worth mentioning that the considered approximation (3)
collapses to the exact expression of Pℓ,t and, hence, the

relation Pℓ,t = [max (pℓ, (1 − pℓ)/(q − 1))]kℓ−t = qt/qkℓ
holds, for pℓ = q−1.

From (3), the transition probability matrix describing the
AMC associated with user u and message layer ℓ can be
derived by the following lemma.

Lemma 2.2: Assume layer ℓ is transmitted over a subchannel

which adopts the MCS with index m. The probability P(u,ℓ)
i,j

of moving from state s(u,ℓ)i to state s(u,ℓ)j is

P(u,ℓ)
i,j =

⎧

⎨

⎩

(1− Pℓ,kℓ−i)[1− pu(m)] if i− j = 1
Pℓ,kℓ−i[1− pu(m)] + pu(m) if i = j
0 otherwise.

(4)

Proof: Since the user AMC is in state s(u,ℓ)i , user u
has collected kℓ − i linearly independent coded packets, i.e.,
rank(Cu) = kℓ − i. As a new coded packet associated with
layer ℓ is transmitted, we have just two possibilities:

• The rank of Cu is increased to kℓ − i + 1 - The
coded packet is successfully received with probabil-
ity 1 − pu(m), and it is linearly independent of
the previously received coded packets with probability
(1− Pℓ,kℓ−i). This event occurs with a probability equal
to (1− Pℓ,kℓ−i)[1− pu(m)].

• The rank of Cu does not change - That may occur
because the coded packet is not successfully received or
because it is linearly dependent of the previously received
coded packets. This event occurs with a probability equal
to Pℓ,kℓ−i[1− pu(m)] + pu(m).

That concludes the proof.

From (4), we also understand that the probability of mov-

ing from state s(u,ℓ)0 to another state is zero. Hence, s(u,ℓ)0
represents the so-called absorbing state of the AMC. All the

remaining states s(u,ℓ)1 , . . . , s(u,ℓ)kℓ
are commonly referred to
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sparse implementation of EW-RLNC is still an open research
issue.

B. Markovian Modelling for Delay Performance

In this paper, user performance will be expressed in terms of
the average number of coded packet transmissions after which
a user u achieves a predetermined QoS level. For this reason,
in the remainder of the section, we focus on user u and model
the recovery of message layer ℓ as a Markovian process. In
particular, the user decoding process is modeled via an AMC.

Let Cu be a matrix associated with the user u consisting
of kℓ columns and variable number of rows. As user u
successfully receives a coded packet associated with layer ℓ,
the corresponding coding vector is extracted and added, as a
new row, into matrix Cu. Assume u already received nℓ ≥ kℓ
coded packets, i.e., Cu is a nℓ × kℓ matrix. User u recovers
layer ℓ when the rank of Cu, denoted by rank(Cu), is equal
to kℓ or equivalently when the defect of the matrix, defined
as def(Cu) = kℓ − rank(Cu), is zero. For these reasons, we
define a state of the user AMC as follows.

Definition 2.1: The AMC associated with user u and mes-

sage layer ℓ is in state s(u,ℓ)i , if def(Cu) = i, for i = 0, . . . , kℓ.
At first, when user u has not received any coded packet or

coded packets associated with zero-coding vectors, the defect

of Cu is kℓ, and hence, the AMC is in state s(u,ℓ)kℓ
. The

defect progressively decreases, i.e., the index of the AMC
state decreases, as new linearly independent coded packets are
received. As a consequence, in the case of layer ℓ, we have
that the AMC consists of kℓ + 1 states. Furthermore, in order
to define the probability transition matrix of the user AMC, we
summarize here the proof of the following lemma, presented
in [26, Theorem 6.3].

Lemma 2.1 ([26, Theorem 6.3]): Assume that matrix Cu

consists of (t + 1) × kℓ elements, for 0 < t ≤ (kℓ − 1),
and assume that t out of t+ 1 rows are linearly independent.
The probability Pℓ,t that matrix Cu is not full-rank admits the
following upper-bound:

Pℓ,t ≤
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pℓ,
1− pℓ
q − 1

)]kℓ−t

. (2)

Proof: Without loss of generality, assume that the first t
rows of Cu, denoted by Cu,1, . . . ,Cu,t, are linearly indepen-
dent. By resorting to basic row-wise operations, it is possible
to transform Cu such that the first t rows and columns of Cu

define the t× t identity matrix. Consequently, the first t rows
of the transformed Cu generate the same vector space defined
by Cu,1, . . . ,Cu,t. The probability that Cu is not full-rank
entirely depends on the last kℓ − t components of the last
row Cu,t+1 of Cu. Hence, the probability that Cu,t+1 does
not belong to the vector space defined by Cu,1, . . . ,Cu,t is at

least 1−max
(

pℓ,
1−pℓ

q−1

)kℓ−t

. That completes the proof.

Because of (1), the exact QoS characterization is a chal-
lenging task [25]. In particular, to the best of our knowledge,
the exact expression of Pℓ,t is not known. In the rest of the
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is equiprobable, for a given value of kℓ. Hence, a coding
vector belongs to the vector space generated by t linearly
independent coding vectors with probability Pℓ,t = qt/qkℓ .
This result has been discussed in the literature [34] but is
clearly not applicable to the sparse case, in contrast to (3).
It is worth mentioning that the considered approximation (3)
collapses to the exact expression of Pℓ,t and, hence, the

relation Pℓ,t = [max (pℓ, (1 − pℓ)/(q − 1))]kℓ−t = qt/qkℓ
holds, for pℓ = q−1.

From (3), the transition probability matrix describing the
AMC associated with user u and message layer ℓ can be
derived by the following lemma.

Lemma 2.2: Assume layer ℓ is transmitted over a subchannel

which adopts the MCS with index m. The probability P(u,ℓ)
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(1− Pℓ,kℓ−i)[1− pu(m)] if i− j = 1
Pℓ,kℓ−i[1− pu(m)] + pu(m) if i = j
0 otherwise.

(4)

Proof: Since the user AMC is in state s(u,ℓ)i , user u
has collected kℓ − i linearly independent coded packets, i.e.,
rank(Cu) = kℓ − i. As a new coded packet associated with
layer ℓ is transmitted, we have just two possibilities:

• The rank of Cu is increased to kℓ − i + 1 - The
coded packet is successfully received with probabil-
ity 1 − pu(m), and it is linearly independent of
the previously received coded packets with probability
(1− Pℓ,kℓ−i). This event occurs with a probability equal
to (1− Pℓ,kℓ−i)[1− pu(m)].

• The rank of Cu does not change - That may occur
because the coded packet is not successfully received or
because it is linearly dependent of the previously received
coded packets. This event occurs with a probability equal
to Pℓ,kℓ−i[1− pu(m)] + pu(m).

That concludes the proof.

From (4), we also understand that the probability of mov-

ing from state s(u,ℓ)0 to another state is zero. Hence, s(u,ℓ)0
represents the so-called absorbing state of the AMC. All the
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in the remainder of the section, we focus on user u and model
the recovery of message layer ℓ as a Markovian process. In
particular, the user decoding process is modeled via an AMC.

Let Cu be a matrix associated with the user u consisting
of kℓ columns and variable number of rows. As user u
successfully receives a coded packet associated with layer ℓ,
the corresponding coding vector is extracted and added, as a
new row, into matrix Cu. Assume u already received nℓ ≥ kℓ
coded packets, i.e., Cu is a nℓ × kℓ matrix. User u recovers
layer ℓ when the rank of Cu, denoted by rank(Cu), is equal
to kℓ or equivalently when the defect of the matrix, defined
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define a state of the user AMC as follows.

Definition 2.1: The AMC associated with user u and mes-

sage layer ℓ is in state s(u,ℓ)i , if def(Cu) = i, for i = 0, . . . , kℓ.
At first, when user u has not received any coded packet or

coded packets associated with zero-coding vectors, the defect

of Cu is kℓ, and hence, the AMC is in state s(u,ℓ)kℓ
. The

defect progressively decreases, i.e., the index of the AMC
state decreases, as new linearly independent coded packets are
received. As a consequence, in the case of layer ℓ, we have
that the AMC consists of kℓ + 1 states. Furthermore, in order
to define the probability transition matrix of the user AMC, we
summarize here the proof of the following lemma, presented
in [26, Theorem 6.3].
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paper, owing to the lack of the exact expression of Pℓ,t, we
use (2) to approximate Pℓ,t, that is
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. (3)

The following remark is immediate from (2) and (3).

Remark 2.1: If pℓ = q−1, each non-degenerate coding vector
is equiprobable, for a given value of kℓ. Hence, a coding
vector belongs to the vector space generated by t linearly
independent coding vectors with probability Pℓ,t = qt/qkℓ .
This result has been discussed in the literature [34] but is
clearly not applicable to the sparse case, in contrast to (3).
It is worth mentioning that the considered approximation (3)
collapses to the exact expression of Pℓ,t and, hence, the

relation Pℓ,t = [max (pℓ, (1 − pℓ)/(q − 1))]kℓ−t = qt/qkℓ
holds, for pℓ = q−1.

From (3), the transition probability matrix describing the
AMC associated with user u and message layer ℓ can be
derived by the following lemma.
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⎩

(1− Pℓ,kℓ−i)[1− pu(m)] if i− j = 1
Pℓ,kℓ−i[1− pu(m)] + pu(m) if i = j
0 otherwise.

(4)

Proof: Since the user AMC is in state s(u,ℓ)i , user u
has collected kℓ − i linearly independent coded packets, i.e.,
rank(Cu) = kℓ − i. As a new coded packet associated with
layer ℓ is transmitted, we have just two possibilities:

• The rank of Cu is increased to kℓ − i + 1 - The
coded packet is successfully received with probabil-
ity 1 − pu(m), and it is linearly independent of
the previously received coded packets with probability
(1− Pℓ,kℓ−i). This event occurs with a probability equal
to (1− Pℓ,kℓ−i)[1− pu(m)].

• The rank of Cu does not change - That may occur
because the coded packet is not successfully received or
because it is linearly dependent of the previously received
coded packets. This event occurs with a probability equal
to Pℓ,kℓ−i[1− pu(m)] + pu(m).

That concludes the proof.

From (4), we also understand that the probability of mov-

ing from state s(u,ℓ)0 to another state is zero. Hence, s(u,ℓ)0
represents the so-called absorbing state of the AMC. All the

remaining states s(u,ℓ)1 , . . . , s(u,ℓ)kℓ
are commonly referred to
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sparse implementation of EW-RLNC is still an open research
issue.

B. Markovian Modelling for Delay Performance

In this paper, user performance will be expressed in terms of
the average number of coded packet transmissions after which
a user u achieves a predetermined QoS level. For this reason,
in the remainder of the section, we focus on user u and model
the recovery of message layer ℓ as a Markovian process. In
particular, the user decoding process is modeled via an AMC.

Let Cu be a matrix associated with the user u consisting
of kℓ columns and variable number of rows. As user u
successfully receives a coded packet associated with layer ℓ,
the corresponding coding vector is extracted and added, as a
new row, into matrix Cu. Assume u already received nℓ ≥ kℓ
coded packets, i.e., Cu is a nℓ × kℓ matrix. User u recovers
layer ℓ when the rank of Cu, denoted by rank(Cu), is equal
to kℓ or equivalently when the defect of the matrix, defined
as def(Cu) = kℓ − rank(Cu), is zero. For these reasons, we
define a state of the user AMC as follows.
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of Cu is kℓ, and hence, the AMC is in state s(u,ℓ)kℓ
. The

defect progressively decreases, i.e., the index of the AMC
state decreases, as new linearly independent coded packets are
received. As a consequence, in the case of layer ℓ, we have
that the AMC consists of kℓ + 1 states. Furthermore, in order
to define the probability transition matrix of the user AMC, we
summarize here the proof of the following lemma, presented
in [26, Theorem 6.3].

Lemma 2.1 ([26, Theorem 6.3]): Assume that matrix Cu

consists of (t + 1) × kℓ elements, for 0 < t ≤ (kℓ − 1),
and assume that t out of t+ 1 rows are linearly independent.
The probability Pℓ,t that matrix Cu is not full-rank admits the
following upper-bound:
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Proof: Without loss of generality, assume that the first t
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dent. By resorting to basic row-wise operations, it is possible
to transform Cu such that the first t rows and columns of Cu

define the t× t identity matrix. Consequently, the first t rows
of the transformed Cu generate the same vector space defined
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use (2) to approximate Pℓ,t, that is
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∼=
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max
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. (3)

The following remark is immediate from (2) and (3).

Remark 2.1: If pℓ = q−1, each non-degenerate coding vector
is equiprobable, for a given value of kℓ. Hence, a coding
vector belongs to the vector space generated by t linearly
independent coding vectors with probability Pℓ,t = qt/qkℓ .
This result has been discussed in the literature [34] but is
clearly not applicable to the sparse case, in contrast to (3).
It is worth mentioning that the considered approximation (3)
collapses to the exact expression of Pℓ,t and, hence, the

relation Pℓ,t = [max (pℓ, (1 − pℓ)/(q − 1))]kℓ−t = qt/qkℓ
holds, for pℓ = q−1.

From (3), the transition probability matrix describing the
AMC associated with user u and message layer ℓ can be
derived by the following lemma.

Lemma 2.2: Assume layer ℓ is transmitted over a subchannel

which adopts the MCS with index m. The probability P(u,ℓ)
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0 otherwise.

(4)

Proof: Since the user AMC is in state s(u,ℓ)i , user u
has collected kℓ − i linearly independent coded packets, i.e.,
rank(Cu) = kℓ − i. As a new coded packet associated with
layer ℓ is transmitted, we have just two possibilities:

• The rank of Cu is increased to kℓ − i + 1 - The
coded packet is successfully received with probabil-
ity 1 − pu(m), and it is linearly independent of
the previously received coded packets with probability
(1− Pℓ,kℓ−i). This event occurs with a probability equal
to (1− Pℓ,kℓ−i)[1− pu(m)].

• The rank of Cu does not change - That may occur
because the coded packet is not successfully received or
because it is linearly dependent of the previously received
coded packets. This event occurs with a probability equal
to Pℓ,kℓ−i[1− pu(m)] + pu(m).

That concludes the proof.

From (4), we also understand that the probability of mov-

ing from state s(u,ℓ)0 to another state is zero. Hence, s(u,ℓ)0
represents the so-called absorbing state of the AMC. All the

remaining states s(u,ℓ)1 , . . . , s(u,ℓ)kℓ
are commonly referred to

6

as transient states [35]. The state transition diagram of the
resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the
(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing
the AMC of user u and associated with layer ℓ has the
following structure in its canonical form [35]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the
AMC process as long as it involves only transient states. The
term R(u,ℓ) is a column vector of kℓ elements which lists all
the probabilities of moving from a transient to the absorbing
state. From [35, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =
∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1
. (6)

Element N(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s(u,ℓ)i to state s(u,ℓ)j , where

both s(u,ℓ)i and s(u,ℓ)j are transient states. In particular, from
Lemma 2.2, the following theorem holds

Theorem 2.1 ([35, Theorem 3.3.5]): If the AMC is in the

transient state s(u,ℓ)i , the average number of coded packet

transmissions needed to get to state s(u,ℓ)0 is

τ (u,ℓ)i =

⎧

⎪

⎨

⎪

⎩

0 if i = 0
i
∑

j=1

N(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.
Corollary 2.1: In the case of S-RLNC, the average number

τ (u,ℓ)S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ (u,ℓ)S-RLNC = τ (u,ℓ)kℓ
.

Proof: When the source node transmits the very first

coded packet, user u is in state s(u,ℓ)kℓ
. That follows from the

fact that the source node has not previously transmitted any
coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at
the end of the systematic phase, user u may have collected
one or more source packets, implying that def(Cu) may be
smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s(u,ℓ)0 , . . . , s(u,ℓ)kℓ−1.
Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ (u,ℓ)S-SRLNC of systematic and coded
packet transmissions needed to recover layer ℓ is

τ (u,ℓ)S-SRLNC =
kℓ
∑

i=0

π(u,ℓ)
i

(

kℓ − i+ τ (u,ℓ)i

)

(8)

where π(u,ℓ)
i is the probability that the process associated with

user u starts from state s(u,ℓ)i , given by

π(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]kℓ−i , i = 0, . . . , kℓ. (9)
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Fig. 3. Average number of coded packet transmissions and decoding opera-
tions, for q = 2. With regards the S-SRLNC scheme, the average number of
decoding operations have been obtained by considering pu = 0.1.

Proof: Assume that u collects kℓ− i out of kℓ systematic
packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s(u,ℓ)i .
In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ (u,ℓ)i packet transmissions, namely,

kℓ − i systematic packets plus τ (u,ℓ)i coded packets. At the
end of the systematic packet transmission phase, the AMC

is in state s(u,ℓ)i with probability
(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ (u,ℓ)S-SRLNC is obtained by

simply averaging kℓ−i+τ (u,ℓ)i with the appropriate probability

value of π(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
consider the reduction of the number of source packets, and the
increase of the sparsity of the non-degenerate coding vectors
per source message layer. As discussed in Section II, we
remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one
resource block or, equivalently, forming a coded packet, is
likely to increase. Given that coded and source packets have
the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the
reception of subchannel ℓ is likely to increase, i.e., the fraction
of multicast users regarding the reception of subchannel ℓ as
acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the
probability pℓ of selecting a coding coefficient equal to zero
determine the average number of coded packet transmissions
and the average number of decoding operations needed to
recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ (u,ℓ)S−RLNC and τ (u,ℓ)S−SRLNC as a function of pℓ,
for q = 2, kℓ = {10, 70} and a packet error probability
pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves
have been obtained by computer simulations. More details
about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded
packets are transmitted after the systematic packets. Obviously,
if pu = 0, there is no need of transmitting coded packets as all
the systematic packets are successfully received. That explains

the reason way τ (u,ℓ)S−SRLNC is always equal to kℓ, for pu = 0.

AMC	transition	
matrix

6

as transient states [35]. The state transition diagram of the
resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the
(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing
the AMC of user u and associated with layer ℓ has the
following structure in its canonical form [35]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the
AMC process as long as it involves only transient states. The
term R(u,ℓ) is a column vector of kℓ elements which lists all
the probabilities of moving from a transient to the absorbing
state. From [35, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =
∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1
. (6)

Element N(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s(u,ℓ)i to state s(u,ℓ)j , where

both s(u,ℓ)i and s(u,ℓ)j are transient states. In particular, from
Lemma 2.2, the following theorem holds

Theorem 2.1 ([35, Theorem 3.3.5]): If the AMC is in the

transient state s(u,ℓ)i , the average number of coded packet

transmissions needed to get to state s(u,ℓ)0 is

τ (u,ℓ)i =

⎧

⎪

⎨

⎪

⎩

0 if i = 0
i
∑

j=1

N(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.
Corollary 2.1: In the case of S-RLNC, the average number

τ (u,ℓ)S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ (u,ℓ)S-RLNC = τ (u,ℓ)kℓ
.

Proof: When the source node transmits the very first

coded packet, user u is in state s(u,ℓ)kℓ
. That follows from the

fact that the source node has not previously transmitted any
coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at
the end of the systematic phase, user u may have collected
one or more source packets, implying that def(Cu) may be
smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s(u,ℓ)0 , . . . , s(u,ℓ)kℓ−1.
Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ (u,ℓ)S-SRLNC of systematic and coded
packet transmissions needed to recover layer ℓ is

τ (u,ℓ)S-SRLNC =
kℓ
∑

i=0

π(u,ℓ)
i

(

kℓ − i+ τ (u,ℓ)i

)

(8)

where π(u,ℓ)
i is the probability that the process associated with

user u starts from state s(u,ℓ)i , given by

π(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]kℓ−i , i = 0, . . . , kℓ. (9)
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Fig. 3. Average number of coded packet transmissions and decoding opera-
tions, for q = 2. With regards the S-SRLNC scheme, the average number of
decoding operations have been obtained by considering pu = 0.1.

Proof: Assume that u collects kℓ− i out of kℓ systematic
packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s(u,ℓ)i .
In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ (u,ℓ)i packet transmissions, namely,

kℓ − i systematic packets plus τ (u,ℓ)i coded packets. At the
end of the systematic packet transmission phase, the AMC

is in state s(u,ℓ)i with probability
(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ (u,ℓ)S-SRLNC is obtained by

simply averaging kℓ−i+τ (u,ℓ)i with the appropriate probability

value of π(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
consider the reduction of the number of source packets, and the
increase of the sparsity of the non-degenerate coding vectors
per source message layer. As discussed in Section II, we
remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one
resource block or, equivalently, forming a coded packet, is
likely to increase. Given that coded and source packets have
the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the
reception of subchannel ℓ is likely to increase, i.e., the fraction
of multicast users regarding the reception of subchannel ℓ as
acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the
probability pℓ of selecting a coding coefficient equal to zero
determine the average number of coded packet transmissions
and the average number of decoding operations needed to
recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ (u,ℓ)S−RLNC and τ (u,ℓ)S−SRLNC as a function of pℓ,
for q = 2, kℓ = {10, 70} and a packet error probability
pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves
have been obtained by computer simulations. More details
about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded
packets are transmitted after the systematic packets. Obviously,
if pu = 0, there is no need of transmitting coded packets as all
the systematic packets are successfully received. That explains

the reason way τ (u,ℓ)S−SRLNC is always equal to kℓ, for pu = 0.

Fundamental	
matrix



Markovian Model
๏ Why is the fundamental matrix so important? Its (i,j) element is 

the avg. number of coded packet transmissions needed (to a 
system started at the i-th state) to get to the j-th state.  

๏ Hence, the avg number of transmissions needed to get to the 
absorbing state (for a system started in the i-th state) is
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as transient states [35]. The state transition diagram of the
resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the
(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing
the AMC of user u and associated with layer ℓ has the
following structure in its canonical form [35]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the
AMC process as long as it involves only transient states. The
term R(u,ℓ) is a column vector of kℓ elements which lists all
the probabilities of moving from a transient to the absorbing
state. From [35, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =
∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1
. (6)

Element N(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s(u,ℓ)i to state s(u,ℓ)j , where

both s(u,ℓ)i and s(u,ℓ)j are transient states. In particular, from
Lemma 2.2, the following theorem holds

Theorem 2.1 ([35, Theorem 3.3.5]): If the AMC is in the

transient state s(u,ℓ)i , the average number of coded packet

transmissions needed to get to state s(u,ℓ)0 is

τ (u,ℓ)i =

⎧

⎪

⎨

⎪

⎩

0 if i = 0
i
∑

j=1

N(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.
Corollary 2.1: In the case of S-RLNC, the average number

τ (u,ℓ)S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ (u,ℓ)S-RLNC = τ (u,ℓ)kℓ
.

Proof: When the source node transmits the very first

coded packet, user u is in state s(u,ℓ)kℓ
. That follows from the

fact that the source node has not previously transmitted any
coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at
the end of the systematic phase, user u may have collected
one or more source packets, implying that def(Cu) may be
smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s(u,ℓ)0 , . . . , s(u,ℓ)kℓ−1.
Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ (u,ℓ)S-SRLNC of systematic and coded
packet transmissions needed to recover layer ℓ is

τ (u,ℓ)S-SRLNC =
kℓ
∑

i=0

π(u,ℓ)
i

(

kℓ − i+ τ (u,ℓ)i

)

(8)

where π(u,ℓ)
i is the probability that the process associated with

user u starts from state s(u,ℓ)i , given by

π(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]kℓ−i , i = 0, . . . , kℓ. (9)
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Fig. 3. Average number of coded packet transmissions and decoding opera-
tions, for q = 2. With regards the S-SRLNC scheme, the average number of
decoding operations have been obtained by considering pu = 0.1.

Proof: Assume that u collects kℓ− i out of kℓ systematic
packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s(u,ℓ)i .
In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ (u,ℓ)i packet transmissions, namely,

kℓ − i systematic packets plus τ (u,ℓ)i coded packets. At the
end of the systematic packet transmission phase, the AMC

is in state s(u,ℓ)i with probability
(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ (u,ℓ)S-SRLNC is obtained by

simply averaging kℓ−i+τ (u,ℓ)i with the appropriate probability

value of π(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
consider the reduction of the number of source packets, and the
increase of the sparsity of the non-degenerate coding vectors
per source message layer. As discussed in Section II, we
remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one
resource block or, equivalently, forming a coded packet, is
likely to increase. Given that coded and source packets have
the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the
reception of subchannel ℓ is likely to increase, i.e., the fraction
of multicast users regarding the reception of subchannel ℓ as
acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the
probability pℓ of selecting a coding coefficient equal to zero
determine the average number of coded packet transmissions
and the average number of decoding operations needed to
recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ (u,ℓ)S−RLNC and τ (u,ℓ)S−SRLNC as a function of pℓ,
for q = 2, kℓ = {10, 70} and a packet error probability
pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves
have been obtained by computer simulations. More details
about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded
packets are transmitted after the systematic packets. Obviously,
if pu = 0, there is no need of transmitting coded packets as all
the systematic packets are successfully received. That explains

the reason way τ (u,ℓ)S−SRLNC is always equal to kℓ, for pu = 0.

๏ In the non-systematic RNC we have

6

as transient states [35]. The state transition diagram of the
resulting AMC can be represented as reported in Fig. 2.

From Lemma 2.2, it directly follows that the
(kℓ + 1)× (kℓ + 1) transition matrix T(u,ℓ) describing
the AMC of user u and associated with layer ℓ has the
following structure in its canonical form [35]:

T(u,ℓ) .
=

[

1 0

R(u,ℓ) Q(u,ℓ)

]

, (5)

where Q(u,ℓ) is the kℓ × kℓ transition matrix modeling the
AMC process as long as it involves only transient states. The
term R(u,ℓ) is a column vector of kℓ elements which lists all
the probabilities of moving from a transient to the absorbing
state. From [35, Theorem 3.2.4], let define matrix N(u,ℓ) as

N(u,ℓ) =
∞
∑

t=0

(

Q(u,ℓ)
)t

=
[

I−Q(u,ℓ)
]

−1
. (6)

Element N(u,ℓ)
i,j at the location (i, j) of matrix N(u,ℓ) defines

the average number of coded packet transmissions required for

the process transition from state s(u,ℓ)i to state s(u,ℓ)j , where

both s(u,ℓ)i and s(u,ℓ)j are transient states. In particular, from
Lemma 2.2, the following theorem holds

Theorem 2.1 ([35, Theorem 3.3.5]): If the AMC is in the

transient state s(u,ℓ)i , the average number of coded packet

transmissions needed to get to state s(u,ℓ)0 is

τ (u,ℓ)i =

⎧

⎪

⎨

⎪

⎩

0 if i = 0
i
∑

j=1

N(u,ℓ)
i,j if i = 1, . . . , kℓ.

(7)

From (7) and Theorem 2.1, we prove the following corollaries.
Corollary 2.1: In the case of S-RLNC, the average number

τ (u,ℓ)S-RLNC of coded packets transmissions needed by user u to

recover the source message layer ℓ is τ (u,ℓ)S-RLNC = τ (u,ℓ)kℓ
.

Proof: When the source node transmits the very first

coded packet, user u is in state s(u,ℓ)kℓ
. That follows from the

fact that the source node has not previously transmitted any
coded packets, and, hence, rank(Cu) is always equal to 0.

We remark that, in the case of S-SRLNC transmission, at
the end of the systematic phase, user u may have collected
one or more source packets, implying that def(Cu) may be
smaller than kℓ. In particular, if def(Cu) < kℓ, the AMC will

start from any of the states s(u,ℓ)0 , . . . , s(u,ℓ)kℓ−1.
Corollary 2.2: Consider S-SRLNC. If systematic and non-

systematic coded packets associated with source message ℓ
are transmitted by means of the MCS with index m, the

considered average number τ (u,ℓ)S-SRLNC of systematic and coded
packet transmissions needed to recover layer ℓ is

τ (u,ℓ)S-SRLNC =
kℓ
∑

i=0

π(u,ℓ)
i

(

kℓ − i+ τ (u,ℓ)i

)

(8)

where π(u,ℓ)
i is the probability that the process associated with

user u starts from state s(u,ℓ)i , given by

π(u,ℓ)
i =

(

kℓ
i

)

pu(m)i [1− pu(m)]kℓ−i , i = 0, . . . , kℓ. (9)
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Fig. 3. Average number of coded packet transmissions and decoding opera-
tions, for q = 2. With regards the S-SRLNC scheme, the average number of
decoding operations have been obtained by considering pu = 0.1.

Proof: Assume that u collects kℓ− i out of kℓ systematic
packets. Hence, matrix Cu consists of kℓ − i linearly inde-

pendent rows and, hence, the user AMC is in state s(u,ℓ)i .
In that case, from (7), we have that layer ℓ is recovered, on

average, after kℓ − i + τ (u,ℓ)i packet transmissions, namely,

kℓ − i systematic packets plus τ (u,ℓ)i coded packets. At the
end of the systematic packet transmission phase, the AMC

is in state s(u,ℓ)i with probability
(

kℓ

i

)

pu(m)i [1− pu(m)]kℓ−i
,

for i = 0, . . . , kℓ. Hence, the value of τ (u,ℓ)S-SRLNC is obtained by

simply averaging kℓ−i+τ (u,ℓ)i with the appropriate probability

value of π(u,ℓ)
i , for i = 0, . . . , kℓ, as provided in (8).

III. SPARSE RLNC OPTIMIZATION: MOTIVATIONS AND

RESOURCE ALLOCATION MODELS

Among the most effective ways of decreasing the com-
putational complexity of the RLNC decoding operations, we
consider the reduction of the number of source packets, and the
increase of the sparsity of the non-degenerate coding vectors
per source message layer. As discussed in Section II, we
remark that as the MCS index mℓ used to transmit layer ℓ
increases, the number r(mℓ) of useful bits carried by one
resource block or, equivalently, forming a coded packet, is
likely to increase. Given that coded and source packets have
the same bit size, the value of kℓ is likely to decrease when mℓ

increases. However, as mℓ increases, user PER related to the
reception of subchannel ℓ is likely to increase, i.e., the fraction
of multicast users regarding the reception of subchannel ℓ as
acceptable is likely to decrease.

It is worth noting that both the value of kℓ and the
probability pℓ of selecting a coding coefficient equal to zero
determine the average number of coded packet transmissions
and the average number of decoding operations needed to
recover layer ℓ. With regards to the first aspect, Fig. 3a shows

the value of τ (u,ℓ)S−RLNC and τ (u,ℓ)S−SRLNC as a function of pℓ,
for q = 2, kℓ = {10, 70} and a packet error probability
pu = {0, 0.1}, when S-RLNC or S-SRLNC is used. Curves
have been obtained by computer simulations. More details
about the simulation environment will be given in Section IV.

In the case of S-SRLNC, as discussed in Section II-A, coded
packets are transmitted after the systematic packets. Obviously,
if pu = 0, there is no need of transmitting coded packets as all
the systematic packets are successfully received. That explains

the reason way τ (u,ℓ)S−SRLNC is always equal to kℓ, for pu = 0.



3. Resource Allocation for Sparse RLNC



Proposed RA Model
๏ The objective of the problem is to minimize the computational 

complexity of the decoding operations. 

๏ The main constraints are those which impose an upper-limit to the 
avg. number of transmissions needed to allow a target number of 
users to recover a certain layer.
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ST max

p1,...,pL

m1,...,mL

kpk1 (1)

s.t.

UX

u=1

�
⇣
⌧ (u,`)S-RLNC  ⌧̂`

⌘
� ˆU`, ` = 1, . . . , L (2)

q�1  p` < 1 ` = 1, . . . , L (3)

m` 2 {1, . . . ,M} ` = 1, . . . , L (4)

The	solution	is	not	trivial…	but	we	derived	
an	analytical	solution	via	referring	to	tools	
belonging	to	the	convex	optimization	

domain.	The	solution	is	safe!



Proposed RA Model
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ST max

p1,...,pL

m1,...,mL

kpk1 (1)

s.t.

UX

u=1

�
⇣
⌧ (u,`)S-RLNC  ⌧̂`

⌘
� ˆU`, ` = 1, . . . , L (2)

q�1  p` < 1 ` = 1, . . . , L (3)

m` 2 {1, . . . ,M} ` = 1, . . . , L (4)

๏ The sum of the sparsity of each layer is maximized 

๏ The no. of UEs experiencing at most the target avg. recovery delay 
shall be greater than or equal to a predetermined fraction 

๏ RNC shall go sparse and not dense!



4. Numerical Results



Target cellTarget MG

eNB

Scenario	with	a	high	heterogeneity.	80	
UEs	equally	spaced	and		placed	along	the	
radial	line	representing	the	symmetry	
axis	of	one	sector	of	the	target	cell

Simulated Scenario
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We	considered	Stream	A	and	B	
which	have	3	layers,	bitrate	of	
A	is	smaller	than	that	of	B

๏ LTE-A eMBMS scenarios
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Û1Û2Û3
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Stream A
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Stream B
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5. Concluding Remarks



Concluding Remarks
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๏ We addressed the issue of the complexity of a generic 
network coding decoder, in a multicast network scenario.  

๏ We proposed a constrained convex resource allocation 
framework suitable for jointly optimizing both the MCS 
indexes and the code sparsity. 

๏ The objective of the optimization model is that of minimizing 
the number of operations performed by a generic network 
coding decoder employing GE. 

๏ The average transmission footprint is likely to increase as the 
sparsity of the code grows. However, this drawback is 
greatly reduced by simply avoiding the transmissions of all-
zero coding vectors. 

๏ The proposed optimization ensures a reduction in the 
average number of decoding operations of at least 57%.
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