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Starting Point and Goals

® Point-to-Multipoint communications play a pivotal role in 4G/
5G networks. We champion RLNC.

® A fundamental problem: the computational complexity of the
RLNC decoder. The higher the number of decoding operations
is, the more the user's computational overhead grows and,
consequently, the faster the batteries of mobile devices drain.

® Layered service consists of a basic layer and multiple
enhancement layers.

Goals

@ Efficient way to characterize the performance of users targeted by
ultra-reliable layered multicast services

® Convex RA framework for minimizing the complexity of the RLNC
decoder by jointly optimizing the transmission parameters and the
sparsity of the code.
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1. System Model and RNC Background
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System Model

® One-hop wireless communication system composed of one
source node and U users

|

UE,

o UE
!
~ ¢J Source UE A

UE B3 Node

® Each PtM layered service is dehvered through C orthogonal
broadcast erasure subchannels

subch. 1
- The same MCS
subch. 2
Capacity of subch. 3
bch. 3
SUuoc | | | | ! | ! .~ (no. of packets)
B, Bs B;

® Each subchannel delivers streams of (en)coded packets
(according to a RLNC scheme).
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RNC in a Nutshell

©@ X = {xl, R K} is a layered source message of K source
packets, classified into L service layers
Ki=K

>

LK

>i<€ >

k3
® Encoding performed over each service layer independently
from the others.

® The source node will linearly combine the £k; data packets
composing the I-th layer {iUi}i:eKe_lJrl and will generate a

stream of coded packets, where
Ko . Coefficients of the

. linear combination
Y3 Z ¢ are selected over a

1=Ky_1+1 finite field of size ¢ tY.°f
6 s 11y OL



RNC in a Nutshell

® Let us refer to the user u and layer [ As user u successfully

receives a coded packet, the corresponding coding vector is
extracted and added, as a new row, into matrix C..

. Tly rows x k‘g cols
® Assume u already received 7y > Kycoded packets
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RNC in a Nutshell

® When C,, has rank equal to £y, the user can keep only the
linearly independent rows and invert the matrix.

Cu-xi =y"+=[C.,' v/ =x])

Encoding | Decoding |

® Given [1, 0] and [0, 1], is [2, 2] linearly independent?
* No, because 2[1, 0] + 2[0, 1] - [2, 2] = [0, 0]

® Given two lin. indep. vectors (a and b) in GF(q), how many
vectors form span({a,b})?

* g2 Fora=[1,0],b=10,1] and q = 2, span({a,b}) = {[0, 0],
10, 1], [1, O], [1, 1]]}

® Let us encode over a set of 5 inf. elements, if I collected 3 lin.
indep. coding vectors, what is the prob. of collecting a new lin.
dep. coding vec.?
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2. Performance Analysis via Markov Chains
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The Coding Matrix

® Matrix C,, is a random matrix over GF(q), where elements are
independently and uniformly selected by the following prob. law

Dy if v=20
if v € GF(q) \ {0}

© If e = 1/q all the GF(q) elements are equiprobable and things
are nice and easy... otherwise, things get tricky!

® Since 1997, only 2 conference papers and 2 (+1 on Arxiv) journal
papers deal with sparse random matrices.
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Should I Stay or Should I Go?

‘ ‘ ‘ | - . 4 |
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A e—e——e—e=—8-—-0-—-0—-f § I =
e o o o o o o o of bl
T 65 @ S-RLNC, k; = 10 | ©  Foskog
O 55l v S-SRLNC, k; = 10 1 A ;
" | 0 S-RLNC, k; = 70 | |
© 45| + S-SRLNC, k,= 70 | - | :
S 35— Pu=0 = 102%% | |
SRD T = | X k=10 M
Zad : | &2 || 0 k=30 | 76.6 us |
_ I I - — I 7 L — 70 54.3 us|
1 5 - - R Y * ¢
Sl v v 7 |20 FTSRLNG 3o R0
10L H - S-SRLNC[— ‘ ‘
< 0.5 0.6 0.7 - 0.8 0.9 1 < 0.5 0.6 0.7 Dy 0.8 0.9 1

® Some actual performance value obtained by implementing a sparse
RNC decoder in a Raspberry i Model B.

® If you can afford to wait, than sparsity is your best fit!
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Markovian Model

® Our chain models the process (seen from the perspective of the
receiver) of building a full-rank coding matrix C,,

Pke kp—1 P, 1k, —2 Pg 1 ) ( )
u,f (u,£) (u,?) (u,?)
P/(cg k)g Pke 1,kp—1 Pl,l PO 0

® The chain is in state S,(CZ’E) if kylinearly independent coded packets

are still missing.

® That is an Absorbing Markov Chain (AMC)!
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Markovian Model

u. b (u,ﬁ) u,ﬁ u,ﬁ
s P P P< |
(T (u,?) (u,?) (u,l)
P/(cg,k)e Pkg—l,kg—l Pl,l PO,O

Unknown! We used an

upper-bound! - User PER for a given MCS m
o [ Pee)l-pulm)] =1
Pz’,j, =9 Por,—ill = pulm)| + pu(m) if o=
0 otherwise.
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DoF Probability

® Assume that C,, consists of (t + 1) X ky elements. Assume that
t out of t+1 rows are linearly independent.

o Pet s the probability that Cu s not full-rank and is upper-
bounded as follows':

- 1 . 1 ko—t
Pﬁ,t < |max <p€7 €>

qg— 1
® That bound is exact for p¢ = 1 / d, we have
qt
Py = o

*J. Blomer, R. Karp, and E. Welzl, “The Rank of Sparse Random
Matrices Over Finite Fields,” Random Structures & Algorithms, vol. 10,

no. 4, pp 407—419, 1997 % University of
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Markovian Model

u, b (u,) w, b u,é
PI(GE k>£ 1 Pkg 1,kp—2 Pé 1 ) P( )
w, b (u,f) (u,) (u,f)
P](fg k)g Pkg—l,kg—l P1,1 Po 0
D | AMC transition
T(u,ﬁ) — R(}L E) Q((?)JJ E) matrix
Fundamental ) )
matrix 00 . 4
N (wf) — Z (Q(u,ﬁ)) _ [I _ Q(uaﬁ)}
t=0
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Markovian Model

® Why is the fundamental matrix so important? Its (i,j) element is

the avg. number of coded packet transmissions needed (to a
system started at the i-th state) to get to the j-th state.

® Hence, the avg number of transmissions needed to get to the
absorbing state (for a system started in the i-th state) is

0 it 1 =0
o )
o T YN =1, ke
j=1
® In the non-systematic RNC we have
(u,£) (u,€)

TS.RLNC — Tk,
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3. Resource Allocation for Sparse RLNC
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Proposed RA Model

® The objective of the problem is to minimize the computational
complexity of the decoding operations.

® The main constraints are those which impose an upper-limit to the
avg. number of transmissions needed to allow a target number of
users to recover a certain layer.
The solution is not trivial... but we derived

ST max Hp H 1 an analytical solution via referring to tools
pP1,---PL belonging to the convex optimization
1y, TL domain. The solution is safe!
U
(U’?E) - & S
S.1 E 5(TS—RLNC < 7| = Uy, =1, , L
u=1
g <pr<1 f=1,....L
me € {1,..., M} (=1,...,L
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Proposed RA Model

ST [max Ipll,

S

Pi1,---5PL
U - - b
7’6 2 :
S.t. 25 (TS(TLRI)JNC < g) > Up, t=1,..., L
u=1 _/
—1
@ §p€<1j - - j:jag
me € {1,..., M) (=1,....L

® The sum of the sparsity of each layer is maximized

® The no. of UEs experiencing at most the target avg. recovery delay
shall be greater than or equal to a predetermined fraction

® RNC shall go sparse and not dense!
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4. Numerical Results
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Simulated Scenario

® LTE-A eMBMS scenarios

Scenario with a high heterogeneity. 80

UEs equally spaced and placed along the We considered Stream A and B
radial line representing the symmetry which have 3 layers, bitrate of
axis of one sector of the target cell | ~ Ais smaller than that of B

Target MG larget cell
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Avg. Footprint Ratio
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N\
-
-
-

1500

1000 f

Avg. Transmission Footprint 7

2300

500:.‘

genn-- Layer 1

1 —— Layers 1 and 2
|-—--Layers 1, 2 and 3
{—Layers 1, 2, 3 and 4

(52 140 160 180 200 220

Distance (m)

27

260

530 300

-Vé University of
AL BRISTOL



Avg. Footprint Ratio
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Avg. Number of Operations
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5. Concluding Remarks
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Concluding Remarks

® We addressed the issue of the complexity of a generic
network coding decoder, in a multicast network scenario.

® We proposed a constrained convex resource allocation
framework suitable for jointly optimizing both the MCS
indexes and the code sparsity.

® The objective of the optimization model is that of minimizing
the number of operations performed by a generic network
coding decoder employing GE.

® The average transmission footprint is likely to increase as the
sparsity of the code grows. However, this drawback is
greatly reduced by simply avoiding the transmissions of all-
zero coding vectors.

® The proposed optimization ensures a reduction in the
average number of decoding operations of at least 57 %.
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Resource Allocation Frameworks for Network-coded
Layered Multimedia Multicast Services
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